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Summary

We study an interplay between descriptive set theory and theory of
compact convex sets. Theory of compact convex sets serves as a general
framework for an investigation of Banach spaces as well as more general
objects as subsets of Banach spaces, sets of measures etc. Descriptive
set theory provides a way how to measure a complexity of given ob-
jects. Connections between these two different mathematical disciplines
provide a useful insight in both of them.

We recall that theory of Banach spaces is in a way subsumed by theory
of compact convex sets via the following procedure. If E is a Banach
space, its dual unit ball Bg« endowed with the weak™ topology is a
compact convex set and E can be viewed as an isometric subspace of
the space of all affine continuous functions on Bpg«. Further, Bg: is a
natural example of a compact topological space. Hence it possesses a
rich Borel structure, i.e., it carries the o—algebra of all Borel sets in
Bp-+. Borel sets can be more finely distinguished into Borel classes and
thus we may ask what is the class of a given object in Bg-.

The main focus of the research presented in the thesis is the appli-
cation of (nonmetrizable) descriptive set theory in theory of compact
convex sets. First we build a theory of Borel classes in topological spaces
and show their stability with respect to perfect mappings. This property
turns out to be of utmost importance for the applications in the second
chapter of the thesis. Since the notion of affine Baire-1 functions is stu-
died in Section 3.1, the second part of Chapter 2 deals with the question
of extending Baire-1 functions from subsets of topological spaces. Last
but not least, the third part provides a general theory of Borel classes
in topological spaces.

The second part of the thesis applies the results of the first part in
theory of compact convex sets and Banach spaces. First we solve the
abstract Dirichlet problem for Baire-1 functions on compact convex sets,
then we investigate the possibility of transferring descriptive properties
of strongly affine functions from the set of extreme points.



Resumé

V disertaci studujeme vztahy mezi deskriptivni teorii mnozin a te-
orii kompaktnich konvexnich mnozin. Teorii kompaktnich konvexnich
mnozin lze pokladat za obecny ramec, ve kterém je mozné kromé Bana-
chovych prostorii zkoumat i jejich podmnoziny ¢i prostory mér. Deskrip-
tivni teorie mnozin poskytuje metodu, jak mérit slozitost uvazovanych
objektl. Vztahy mezi témito dvéma matematickymi disciplinami posky-
tuji zajimavy vhled do obou z nich.

Pripomenme, Ze teorie Banachovych prostort je ¢aste¢né zahrnuta v
teorii kompaktnich konvexnich mnozin pomoci nésledujici uvahy. Je-li E
Banachtv prostor, je jeho dualni jednotkova koule Bg+ konvexni mno-
Zina, jez je kompaktni ve weak™ topologii. Déle, F je isometricky vnofen
do prostoru spojitych afinnich funkci na Bg:. JelikoZ je B+ kompaktni
prostor, lze na ném uvazovat borelovskou strukturu, tj. o-algebru bore-
lovskych mnozin. Ty lze dale jemnéji roztridit do borelovskych tiid, coz
umoziuje zkoumat borelovskou t¥idu daného objektu.

Disertacni prace je zamérena na aplikace deskriptivni teorie mnozin v
teorii kompaktnich konvexnich mnozin. Po vybudovani teorie borelov-
skych tiid v obecnych topologickych prostorech jsou prezentovany vy-
sledky o jejich stabilité vzhledem k perfektnim zobrazenim. Tato vlast-
nost je klicova pro pozdéjsi aplikace ve druhé kapitole préace. Jelikoz
je druha ¢ast prace mimo jiné vénovana afinnim funkcim prvni tiridy,
zabyvame se v Sekci 2.2. roz§ifovanim funkei prvni tfidy z podmnozin
topologickych prostori. Zavér prvni kapitoly je pak vénovan obecné te-
orii borelovskych tiid v topologickych prostorech.

Druha ¢ast prace aplikuje vysledky prvni v teorii kompaktnich kon-
vexnich mnozin a v Banachovych prostorech. Nejprve se vénujeme reSeni
abstraktni Dirichletovy tlohy na kompaktnich konvexnich mnozinach.
Druha sekce Kapitoly 2 zkouma prenaseni deskriptivnich vlastnosti silné
afinnich funkci z mnoziny extremélnich bodi.



1. INTRODUCTION

A Banach space is a real normed linear space which is complete in the
metric induced by the norm. In particular, R" or C" is a Banach space
when equipped with the Euclidean norm. The sequence spaces ¢, (for
p € [1,00]), the space ¢y of sequences converging to 0, Lebesgue function
spaces L,([0,1]) (for p € [1,00]) or the space C(]0,1]) of continuous
functions on [0, 1] are classical examples of infinite dimensional Banach
spaces.

Banach spaces admit several structures including algebraical, geome-
trical and topological ones. One can view them as linear spaces, metric
spaces or topological spaces. It is also possible to study the interplay of
these points of view. There are several natural topologies on a Banach
space. The first one is the norm topology, induced by the metric gene-
rated by the norm. Another very important one is the weak topology,
which is the weakest topology having the same continuous linear functi-
onals as the norm topology. On a dual space there is another topology —
namely the topology of pointwise convergence, which is called the weak*
topology.

A compact space is a topological space K such that each cover of K by
open sets admits a finite subcover. For example, the unit interval [0, 1]
is compact. More generally, a subset of R" is compact if and only if it
is closed and bounded. A topological space K is Lindelof if any open
cover of K admits a countable subcover. A metrizable topological space
is Lindel6f if and only if it is separable.

Compact spaces are closely related to Banach spaces. The first result
of this kind says that the closed unit ball Br of a Banach space F is
compact (in the norm topology) if and only if the space E has finite
dimension. A deeper result is the Banach-Alaoglu theorem saying that
the unit ball Bg-« of the dual space X* is compact in the weak™ topology
for any Banach space E. For a compact space K, let C(K) stand for the
Banach space of all continuous functions on K. Then we can embed
any Banach space F to the space C(Bg+) via the canonical embedding,
namely, for x € F we define ¥(z*) = 2*(z), 2* € Bp+. The mapping x >
7 is then an isometric embedding of F into the space of all continuous
affine functions on Bpg-.



This example leads to the study of a more general framework, namely
to the theory of compact convex sets. Let X be a compact convex subset
of a locally convex space F and 2°(X') denote the space of all continuous
affine functions on X. If X = Bpg« for a Banach space F/, X is a subset
of a locally convex space E* endowed with the weak™ topology and E is
identified with the space of all continuous affine functions vanishing at
0. Thus the study of spaces of affine continuous functions on compact
convex set can be regarded as a general framework for an investigation
of Banach spaces.

When dealing with a topological space K, we want to work with easily
definable sets — descriptive ones. A natural descriptive object is the o-
algebra of all Borel subsets of K, i.e., the o-algebra generated by the
family of open subsets of K. By their finer distinguishing we can talk
about sets of Borel class a for a countable ordinal . These classes in a
way describes complexity of the involved sets. One of their interesting
features is their stability with respect to perfect mappings. (Examples of
perfect mappings are continuous mappings between compact topological
spaces. )

The main idea of the thesis is an interplay between theory of compact
convex sets and descriptive properties of the involved affine functions,
in particular we focus on applications of perfect mappings in theory of
compact convex sets.

2. SUMMARY OF CHAPTER 2

We always consider our topological spaces to be Tychonoft, i.e., com-
pletely regular. Also, for the sake of simplicity we consider vector spaces
to be real.

2.1. Summary of Section 2.1: Perfect images of absolute Sou-
slin and absolute Borel Tychonoff spaces. Let us recall classical
results on Borel classes and functions in separable metrizable space due
to Kuratowski, Hausdorff, etc.

We start with several definitions. If X is a set and F is a family of
subsets in X, then F is a sublattice, if ), X € F and F is closed with
respect to finite unions and intersections. The family F is an algebra if
F is a sublattice that is closed with respect to complements. If F is a
family of sets in a set X, we write F, (respectively Fs) for all countable
unions (respectively intersections) of sets from F. We write x4 for the
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characteristic function of a set A and f|4 for the restriction of a function
fon A If f: X — Y is a mapping from X to a topological space Y,
we say that f is F-measurable, if f~1(U) € F for each open U C Y.

If F is a family of sets in a set X, we define abstract Borel classes
generated by F as follows: Let ¥1(F) = F, II1(F) = {X\ F: F € F},
and for a € (1,wy), let

a(F) = (U 1)

f<a

and

() = (U =s09) .
B<a

The family X, (F) is termed the sets of additive class o, the family
I1,(F) is called the sets of multiplicative class c. The sets in Ay (F) =
Yo (F) NI, (F) are the sets of ambiguous class .

Further we define the inductive classes of mappings. If ® is a family
of mappings from a set X to a topological space Y, inductively we
define Baire classes generated by ® as follows: Let &y = ® and for each
countable ordinal o € (0,wy), let @, be the family of all pointwise limits
of sequences from (J;_, .

It will be sometimes convenient to denote the starting family of the
inductive definition as ®;. More precisely, we start from a family denoted
as ®; and then ®, consists of all pointwise limits of sequences from
Ui<gca @5, @ € (1,w1). The purpose of this convention is that we want
to start the generation of mappings between topological spaces from
“Baire-one” mappings.

Let F be an algebra of sets in a set X, Y be a separable metrizable
space and let ®; stand for the family of all ¥y (F)-measurable mappings
from X to Y. Then we get the following analogue of the Lebesgue-
Hausdorff-Banach characterization as follows:

A mapping f: X =Y is ¥y 1(F)-measurable if and only if f € ®,.

If F is a metrizable space and F is the algebra of sets which are
both F, and Gg, then the resulting classes are the classical classes of
Borel sets (see [19, Section 11.B]). Also, the Lebesgue-Hausdorff-Banach
characterization is then a classical result.

If X is a Tychonoff topological space, we write G(X) for the sublattice
of all open subsets of X. A subset A of X is called a zero set if A =
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f71({0}) for a continuous real-valued function f on X. It is clear that
such a function f can be chosen with values in [0,1]. A cozero set is
the complement of a zero set. It is easy to check that zero sets are
preserved by finite unions and countable intersections. Hence cozero sets
are preserved by finite intersections and countable unions. (Zero and
cozero sets are termed functionally closed and functionally open sets in
6, p. 42]).

We recall that Borel sets are members of the o-algebra generated by
the family of all open subset of X and Baire sets are members of the
o-algebra generated by the family of all cozero sets in X. We recall
that a subset A of a topological space X is F,, if A can be written as a
countable union of closed sets. The complement of an F), set is called a
G5 set.

The space X is called scattered if its each subset has an isolated point,
that is, for each A C X there exists x € A and an open set U such that
ANU = {z}. The space X is o—scattered, if X can be written as a
countable union of scattered subspaces.

We consider the following families of subsets of X.

(a) The algebra Bas(X) generated by zero sets. Then
Bas(X) = {O(E \ H;) : F;, H; are zero sets in X, n € N}.
(b) The algebra Z];)S(X ) generated by closed subsets of X. As above,
Bos(X) = {LnJ(FZ \ H;) : F;, H; are closed in X, n € N},
i=1

(c) The algebra Hs(X) of all H-sets (or resolvable sets). H-sets are
defined in |21, §12, II], where their basic properties are described
(see also [20, p. 218]). Let us recall some equivalent definitions. A
subset A of a topological space X is an H—set if for any nonempty
B C X there is a nonempty relatively open U C B such that
either U € Aor UNA = (. It is clear that H-sets form an
algebra containing all open sets. Further, A is an H-set in X if
and only if A is the union of a scattered family of sets of the form
F NG with F closed and G open. (We recall that a family U
of subsets of a topological space is scattered if it is disjoint and
for each nonempty V C U there is some V' € V relatively open
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in | JV. Thus it follows that a topological space X is scattered if
{{z} : x € X} is a scattered family.)

For each algebra of sets listed in (a)-(c) we consider the clas-
ses of sets defined in Section 1.1.2. For a € (1,wy), the sets in
Ya(Bos(X)) or X, (Bas(X)) will be called the sets of additive Bo-
rel or Baire class «, respectively. Similarly we label the sets in
I1,(Bos(X)) orI1,(Bas(X)) as the sets of multiplicative Borel or

Baire class a, respectively.

(d) If we start the Borel hierarchy from the sublattice G(.X) of all open
subsets of X, for metrizable spaces we get the standard Borel
hierarchy as defined in [19, Section 11.B]. We write 39 (G(X))
and I1°(G(X)) for the families obtained by this procedure. We
show below its relation to the families defined in (a)-(c). We just
mention that a set A belongs to £3(G(X)) if and only if A is of
type Fy.

In general, Hs(X) may contain a non-Borel set, in fact Hs(X) may be

a strictly larger family than the system of all Borel sets in X. An easy
example is provided by a suitable scattered compact space X. Namely,
in this case any subset of X is an H-set, since {{z} : x € X} is a
scattered family consisting of closed sets. If X = [0, w;] with the order
topology and A C [0,w;) is a stationary subset, so that [0,w;) \ A is
also stationary (see |15, Lemma 7.6]), then A is a resolvable non-Borel
set (see [29, Lemma 1], [10, p. 296] or [12, Example 4.4]).

We can consider even more general descriptive classes of sets. Let NN
denote the space of all sequences of natural numbers. For ¢ € NN and
n € N, we write o|, for the finite sequence (o(1),...,0(n)). If X is a
set and F is a family of its subsets, we say that A C X is a result of
the Souslin operation applied to the sets F, if

A= J ) Ea.

oeNNn=1
where F, € F for each finite sequence s of natural numbers. We write
S(F) for the family of sets A C X obtainable by this procedure.

For families Bas(.X), Bos(X) and Hs(X) we consider sets obtainable
by the Souslin operation applied to these families.
The main result now can be stated as follows.
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Theorem 1. Let ¢: X — Y be a continuous surjection of a compact

space X onto a compact space Y . Let F be any of the descriptive class
mentioned above and let B CY. Then B € F if and only if o~ (B) €
F.

The basic ingredient of the proof is the following selection result.
We recall that a set-valued mapping F' : X — Y is a usco mapping if
F has compact values and for any closed set H C Y the set

FYH)={zeX:F(x)nH # 0}

is closed in X.

Lemma 1. Let X and Y be Hausdorff topological spaces and F be a
usco mapping of Y to X with nonempty values. Suppose further that
H,, n € N, are resolvable sets.

Then there is a set-valued mapping S of Y to X such that

(a) S(y) C F(y) is a nonempty compact subset of X for everyy € Y,

(b) STHH,)NSHX\ H,) =0 for everyn € N, and

(¢c) STY(H,) is resolvable in Y for every n € N.

For the algebra Bos we can formulate a more general result.

Lemma 2. Let Y be a set and (Y') be an algebra of subsets of Y. Let
H, € Bos(X) for a topological space X, n € N. Suppose further that
F Y — X is a set-valued mapping with F(y) a nonempty compact set
for every y € Y and such that F~1(H) € (Y) for every closed set H in
X.

Then there is an S :' Y — X such that

(a) S(y) C F(y) is a nonempty compact subset of X for everyy € Y,

(b) STHH,) NS HX\ H,) =0, and

(¢c) STYH,) e (V).

This theorem has couple of corollaries. Let us recall that a Tychonoff

space X is termed to be of absolute class F, if X is of class F in any
Tychonoff space it is embedded in.

Theorem 2. For a space X, the following assertions are equivalent.

(1) The space X is of absolute class F.
(ii) The space X is of class F in any compact space it is embedded in.
(iii) The space X is of class F in its Cech-Stone compactification.
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Another consequence of Theorem 1 is the following result on pre-
servation of absolute classes under perfect mappings. We recall that a
mapping ¢: X — Y is perfect if it is continuous, closed and has compact
fibers, i.e., o 1(y) is compact for each y € Y.

Theorem 3. Let ¢: X — Y be a perfect mapping of a space X of

absolute class F onto a Tychonoff space Y. Then'Y 1is of absolute class
F.

We recall that X is scattered-K-analytic it X € S(Hs(8X)) (here BX
stand for the Cech—Stone compactification of X). A particular case of

the previous theorem is a proof of the following conjecture of Hansell
(see |10, Theorem 6.29]).

Theorem 4. A perfect image of a scattered-K -analytic space is a scatter-
ed-K -analytic space.

2.2. Summary of Section 2.1: Extending Baire one functions
on topological spaces. The extension of mappings in a way started
by the Tietze theorem stating that any continuous function on a closed
subset of a normal space can be extended to a continuous function on
the whole space. For Baire-1 mappings there is a classical result that any
Baire-1 function on a Gy subset of a metric space can be extended to a
Baire-1 function defined on the whole space. The aim of this paper is an
investigation of possibility of extending Baire-1 functions from subsets
of topological spaces.
The first result is the following.

Theorem 5. Let X be a space, Y C X and

(a) Y is a cozero subset of X, or
(b) Y s its Lindelof Gs—subset.

Then for any Baire-1 function f on'Y there s a Baire-1 function g on
X such that f =g onY,

inf f(Y) =inf g(X) and sup f(Y)=supg(X) .

To prove the main result we need the following key lemma on separa-
ting disjoint Lindelof sets.

Lemma 3. Let A and B be a couple of disjoint Lindeldf subsets of a
space X.
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If there is no Cozs set G satisfying A C G C X \ B, then there exists
a nonempty closed set H C X such that HNA=HNB=H.

With the help of this key lemma one can proves the main result on
extending Baire-1 functions. (We recall that a space X is hereditarily
Buaire if any closed subset of X is a Baire space.)

Theorem 6. Let Y be a Lindelof hereditarily Baire subset of a space X
and f be a Baire-1 function on'Y . Then there exists a Baire-1 function
g on X such that f =g onY,

inf f(Y) =infg(X) and sup f(Y)=supg(X).

Let (F V G)s stand for countable intersections of sets of the form
F UG, where F is closed and G open. Since any (F'V G)s subset of a
hereditarily Baire space is also hereditarily Baire, we get the following
corollary.

Theorem 7. Let Y be a Lindeldf (F V G)s—subset of a hereditarily
Baire space X. Then any Baire-1 function f on'Y can be extended to
a Baire-1 function g on X so that f =g onY,

inf f(Y)=inf g(X) and sup f(Y)=supg(X) .

Once we can extend Baire-1 functions, the natural question is whe-
ther there is a possibility of extending Baire-1 mappings with values in
metrizable spaces. However, we cannot in general hope to find mappings
which are pointwise limits of continuous functions, but at least we are

able to extend mappings of the first Borel class, i.e., mappings that are
Y9 (Bos(X))-measurable.

Theorem 8. Let Y be a Lindelif subset of a space X. Assume that
(a) Y is hereditarily Baire, or
(b) every Cozs—set in X is Lindeldf and Y is an H-set, or
(¢) Y is Gs—set in X.

Then for any mapping f :' Y — P of the first Borel class to a Polish

space P there exists a mapping g : X — P of the first Borel class such
that f =g on'Y and g(X) C f(Y).

The last main result is important for Section 3.1 and it reads as follows.
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Theorem 9. Let X be a compact set in a locally convex space such that
ext X is Lindelof. Let f be a Baire-1 function on ext X. Then there
exists a Baire-1 function g on X such that f =g on X,

inf f(ext X) =inf g(X) and sup f(ext X)=supg(X).

2.3. Summary of Section 2.1: Borel sets and functions in to-
pological spaces. The aim of this paper is to present an exposition
of Borel classes in topological space and investigate their basic proper-
ties. First result was already mentioned in Section 2.1. It connects the
measurability of mappings with the possibility of their pointwise appro-
ximation, i.e., the classical Lebesgue-Hausdorff-Banach theorem (see
[19, Theorem 24.3]).

Theorem 10. Let F be an algebra of sets in a set X and let Y be
a separable metrizable space. Let @1 stand for the family of all Xo(F)—
measurable mappings from X toY and, for a € (1,wy), let @, be defined
from ®1 as in Section 2.1.

Then, for each o € (0,wy) and f: X — Y, the following assertions
are equivalent:

(i) f € ®a,
(i) f is Xoq1(F)—measurable.

The basic properties of Borel sets in topological spaces are summarized
in the following result.

Theorem 11. Let X be a space. Then the following assertions hold:
(a) 3n(Bas(X)) C Xu(Bos(X)) € Xo(Hs(X)), a € (0,w1),
(b) Unew, Xa(Bas(X)) is the o—algebra of all Baire sets in X and the
family U, ., ¥a(Bos(X)) is the o-algebra of all Borel sets in X,
(c) if A is a subset of a normal space, then A € Ay(Bas(X)) if and
only if A is both F, and Gy,
(d) if X is metrizable, then
(d1) ¥, (Bas(X)) = X4(Bos(X)), a € (0,wy),
(42) % (H(X)) = 5, (Bos(X)) = S(G(X)), a € (1),
(d3) if X is completely metrizable, then Hs(X) = Ay(Bos(X)).

The results of Section 2.1 are then used in a partial answer to a ques-
tion by Mauldin (see |26]). First we recall the notion of order.
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If F is a family of sets in a set X, the order of F (denoted as ord(F))
is the least a € (0,wq) such that X, (F) = Xo41(F) if such « exists,
otherwise the order is wy (see [26, p. 433]).

If X is a topological space, we call ord(Bas(X)), ord(Bos(X)) and
ord(Hs(X)) the Baire, Borel and resolvable order of X, respectively.

If X is a compact space, it is well known that ord(Bas(X)) is either w;
or smaller or equal than 2, depending on the fact whether X is scattered
or not (see [5], [28, Theorem 3.4], [30, Theorem 6.1.2] or Theorem 12 be-
low). The question of the possible values of the Borel order of a compact
space X is asked in [26, Question, p. 440] and [27, Problem, p. 295]. The
following theorem solves one part of this problem.

Theorem 12. For a space X the following assertions hold.
(a) If X is a K—analytic o—scattered space, then

ord(Bas(X)) <2 and ord(Hs(X)) < 2.
(b) If X contains a compact perfect set, then
ord(Bas(X)) = ord(Bos(X)) = ord(Hs(X)) = w;.

However, the general question is still open.

Question. Let X be a compact scattered space. Is it true that
ord(Bos(X)) < 27

The last part of the paper connects Borel measurable mappings with
pointwise limits of sequences of continuous functions. First we define
classes created by means of pointwise limits of Borel measurable map-
pings.

We consider the following classes of mappings between topological
spaces X and Y.

(a) Let Bafy(X,Y') be the family of all ¥o(Bas(X))-measurable map-

pings from X to Y and for o € (1,wy), let

Baf,(X,Y) = (Baf;(X,Y))a.
We call the elements of J,., Bafo(X,Y) the Baire measurable
mappings.
(b) Let Bofi(X,Y) be the family of all ¥9(Bos(X))-measurable map-
pings from X to Y and for o € (1, w;), as above we set

Bof,(X,Y) = (Bof(X,Y))a.
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We call the elements of | J
mappings.
(c) Let Hf{(X,Y) be the family of all ¥o(Hs(X))-measurable map-
pings from X to Y and for o € (1, wy), as above we set
Hfo(X,Y) = (Hf (X, Y))a.

We call the elements of  J Hf,(X,Y) the resolvably measurable
mappings.

Bof,(X,Y) the Borel measurable

a<wi

a<wi

The following theorem justifies the term “measurability” in the defini-
tion above.

Theorem 13. Let f be a mapping from a Tychonoff space X to a sepa-
rable metrizable space Y and o € (0,wy). Then the following assertions
hold:

(a) f € Baf(X,Y) if and only if f is ¥u1(Bas(X))-measurable.
(b) f € Bofo(X,Y) if and only if f is Xoi1(Bos(X))-measurable.
(c) f € HEL(X,Y) if and only if [ is X1 (Hs(X))-measurable.

Let now recall the classical Baire classes of mappings between topolo-
gical spaces.

Let @ € (0,w1). A mapping f : X — Y between topological spaces X
and Y is said to be of Baire class aif f € (C(X,Y))qa, where C(X,Y)
denotes the set of all continuous mappings from X to Y. We write
Co(X,Y) for the family of all mappings of Baire class a.

The following theorem is a variant of the classical characterization of
mappings of Baire class v via their measurability (see e.g. [19, Theorem

24.3| or |8, Theorem 3J).

Theorem 14. Let X be a compact space, Y be an arcwise connected
locally arcwise connected metric space Y and f : X —'Y be a function
such that f~1(U) is a Baire subset of X for every open U C Y. Let
a € (0,wy). Then the following assertions are equivalent:

(i) f € Baf,(X,Y),

(ii) f € Bofo(X,Y),

(iii) f € Hf(X,Y),

(iv) f € Cu(X,Y).

The most difficult part of the proof of Theorem 14 is to show that
C1(X,Y) equals the space of 39(Bas(X)) measurable mappings. There
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is a long series of papers devoted to the question under what conditions
a function f: X — Y is of Baire class 1 if and only if f~1(U) is F, for
each U C Y open. This question has an affirmative answer in any of the
following situations:

e X is an interval in R and Y =R (see [2]),

e X is metric, Y =R (see [23]),

e X is metric, Y =[0,1]", n € N, or Y = [0, 1] (see [21, §27, IX]),

e X is metric, Y is a separable convex subset of a Banach space (see
|31, Lemma 3|),

e X is a complete metric space and Y is a Banach space (see |33,
Theorem 4]),

e X is a normal topological space, Y = R (see |9] or [25, Exercise
3.A.1]),

If f:X — Y is o-discrete (see |9, §3]|, [14, Section 2.2| or [34, p.
144] for the definition and basic properties), then f is of Baire class 1 if
and only if f~1(U) is F, for each U C Y open in any of the following
situation:

e X is a perfectly normal paracompact space, Y is a Banach space
(see [13, Corollary 7]),

e X is collectionwise normal and Y is a closed convex subset of a
Banach space (see [9]),

e X is metric, Y is a complete connected and locally connected
metric space (see [8, Theorem 2|),

e X isnormal, Y is arcwise connected and locally arcwise connected
and f is strongly o-discrete (see [34, Theorem 3.7]).

3. SUMMARY OF CHAPTER 3

3.1. Summary of Section 3.1.: A solution of the abstract Di-
richlet problem for Baire one functions. The first section of this
chapter deals with the abstract Dirichlet problem for Baire-1 functions
on compact convex sets. If X is a compact convex set in a locally convex
space, the classical Krein-Milman theorem asserts that X = convext X,
i.e., X equals the closed convex hull of the set ext X of all extreme points
of X. This theorem can be reformulated in the following way. For any
point 2 € X there exists a measure g € M*(X) such that x = [ id du
(here M'(X) stands for the Radon probability measures on X and
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fX id du is the Pettis integral from the identity mapping.) The equality
z = [, id dp can be reformulated as follows: for any h € A°(X) it holds
h(z) = [y hdp. We call such a measure p a representing measure for x.

The question of finding a representing measure that is more or less
carried by the set ext X leads to the definition of the Choquet order.
We say that p,v € MYX) satisfy p = v if u(k) < v(k) for any
convex continuous function on X. Then for any x € X there exists a
<-maximal measure p representing x that is carried by any Baire set
containing ext X (this is the content of the Choquet-Bishop—de-Leeuw
theorem, see |24, Section 3.8]). If the maximal representing measures are
uniquely determined, X is said to be a simplez. In a finite dimensional
space, this notion leads to the classical definition of a simplex. If X is a
simplex, let d, denotes the maximal measure representing x € X.

The abstract Dirichlet problem is a question whether it is possible to
extend a given function on ext X to an affine function on X.

Bauer showed in [3] that X is a simplex with ext X closed if and only if
any bounded continuous function on ext X can be extended to a function
h € A°(X). The content of Section 3.1. is a proof of a conjecture due
to Jellett (see [16]) which was further elaborated by Kalenda (see [18]).
The main result is the following.

Theorem 15. Let X be a compact convex set. Then the following as-
sertion are equivalent:

(1) X is a simplex and ext X is a Lindelof H—set,

(ii) X is a simplex and for any closed Gs set F' C X the function
x> 0,(F), x € X, is Baire—one,

(iii) X is a simplex and the function x +— §,(f), x € X, is Baire-1 for
every bounded Baire-1 function f on X,

(iv) for every bounded Baire-1 function f on X there exists an affine
Baire-1 function h on X such that f = h on ext X,

(v) for every bounded Baire-1 function f on ext X there exists an
affine Baire-1 function h on X such that f = h on ext X.

Among the main ingredients of the proof belong Theorem 9 and results
of Section 2.1.

3.2. Summary of Section 3.2: Descriptive properties of ele-
ments of biduals of Banach spaces. The second application of the
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results of Section 2.1 deals with the descriptive properties of affine functi-
ons on compact convex sets. We formulate our results in the language of
Banach spaces and their duals. We recall that a function on a compact
convex set X is strongly affine if f(x) = p(f) for every x € X and every
measure g € M (X) representing x.

Now we can state our generalization of Saint Raymond’s result conta-
ined in [32, Corollaire §].

Theorem 16. Let E be a Banach space and f € E* be strongly affine.

Then,
o for a € [Lw), flaggr € Hfalext Bp:) if and only if f €
Hf,(Bg-),
o for a € [L,w), flgiz: € Bofa(ext Bg+) if and only if f €
BOfa(BE*),

o fora €[0,w1), flagp, € Calext Bg+) if and only if f € Co(BE-).
Further we focus on the case when the set of extreme points is Lindel6f.

Theorem 17. Let E be a Banach space such that ext Bg+ is a Lin-
deldf set. Let f € E** be a strongly affine element satisfying flext B, €
Co(ext Bg+) for some o € [0,wy). Then

fe Ca+1(Br+), «a € [0,wo),
CQ(BE*), o € [wo,wl).

By assuming a stronger assumption on ext Bg« we may ensure the
preservation of all classes, including the finite ones.

Theorem 18. Let E be a Banach space such that ext Bgs is a resol-
vable Lindeldf set. Let f € E** be a strongly affine element satisfying
flext By € Cal(ext Bg+) for some o € [1,w1). Then f € Co(Bg-).

For a particular class of Banach spaces, namely the Li-preduals, one
can obtain some information on the affine class of a function from its
descriptive class (we recall that a Banach space F is an Ly-predual if
E* is isometric to some space Li(u); see [17, p.59|, [22, Chapter 7|
or [11, Section IL.5]). Affine classes A, (X), a < wy, of functions on a
compact convex set X are created inductively from 2dy(X) = 2A(X)
(see [4] or |24, Definition 5.37]). We also remark that a pointwise con-
vergent sequence of affine functions on X is uniformly bounded which
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easily follows from the uniform boundedness principle (see e.g. [24,
Lemma 5.36]), and thus any function in (J,.,, a(X) is strongly af-
fine. If X = Bpg« is the dual unit ball of a Banach space E, the affine
classes are termed intrinsic Baire classes of E in [1, p.1047] whereas
strongly affine Baire functions on X creates hierarchy of Baire classes
of E. Theorem 19 relates these classes for real L;-preduals.

We recall that, given a compact convex set X in a real locally convex
space, the Banach space A°(X) is an Li-predual if and only if X is a
simplex (see |7, Theorem 3.2 and Proposition 3.23|).

Theorem 19. Let E be a Ly-predual and f € E** be a strongly affine
function such that f € Co(Bpg+) for some a € [2,w1). Then

f c Q[a-l—l(BE*)? o€ [2,&)0),
Q[a(BE*), Q& [Wo,wl).

If, moreover, ext Bp« is a Lindeldf resolvable set, then f € A, (Bg+).
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