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Summary

We deal with the numerical simulation of a motion of viscous
compressible fluids. Neglecting their microstructure, we consider
fluids as continuum and therefore, the conception of the mechanic
of continuous can be applied. Taking into account the mathemat-
ical formulation of conservation laws and constitutive relations,
we obtain the compressible Navier-Stokes equations (NSEs) which
represent a nonlinear system of partial differential equations of
hyperbolic-parabolic type.

Since there are fundamental obstacles to find an analytical so-
lution of this problem, our aim is to develop a sufficiently robust,
accurate and efficient numerical method for the solution of the
NSEs. It follows from theoretical considerations, numerical ex-
periments as well as practical measurements that a solution of the
NSEs is piecewise regular but it can contain discontinuities and
steep gradients as shock waves, contact discontinuities, boundary
layers, wakes, etc. Therefore, we deduce that the discontinuous
Galerkin method (DGM) seems to be a suitable approach for the
numerical solution of the NSEs.

DGM is based on a piecewise polynomial but discontinuous
approximation which provides robust and high-order accurate sol-
vers, particularly in transport dominated regimes. Furthermore,
there is considerable flexibility in the choice of the mesh design;
indeed, DGM can easily handle non-matching and non-uniform
grids, even anisotropic, and polynomial approximation degrees.
This allows a simple treatment with hp-adaptation techniques.
Additionally, orthogonal bases can easily be constructed which
lead to diagonal mass matrices; this is particularly advantageous
for unsteady problems. Finally, in combination with block-type
preconditioners, DGMs can easily be parallelized.

We start with a numerical analysis of the DGM applied to
a simplified model represented by a scalar nonlinear convection-
diffusion equation. We introduce several variants of the DGM and
show that a numerical solution converges to the exact one provided
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that the mesh size tends to zero. Moreover, we derive a priori error
estimates which give a dependence of the order of convergence of
the DGM on the used degree of polynomial approximation and
the regularity of the exact solution. Finally, presented classes of
numerical experiments are in a good agreement with theoretical
results.

In the second part, we apply the discontinuous Galerkin dis-
cretization to the system of the compressible Navier-Stokes equa-
tions. A special attention is paid to the discretization of the dif-
fusive terms and the choice of the boundary conditions where the
situation is more complicated than in the scalar case. Moreover,
we deal with a higher order temporal discretization in order to
solve sufficiently precisely unsteady flow regimes. We present seve-
ral numerical experiments of inviscid as well as viscous flows in
subsonic, transonic and supersonic flow regimes. These numeri-
cal simulations indicate a great potential of DGM for industrial
applications.

Finally, we present the so-called anisotropic mesh adaptation
method which tries to optimise computational grids in order to
minimise the number of degree of freedom for a given tolerance of
the computational error. We develop a mathematical background
of this approach which is based on a fulfilment of a necessary
condition for a grid. Then we adapt this very general technique
to simulation of viscous compressible flows.

A summary of the achieved results is enclosed.

3



Resumé

Zabýváme se numerickou simulaćı prouděńı vazkých stlačitel-
ných tekutin. Zanedbáńım jejich miktrostruktury můžeme pova-
žovat tekutiny za kontinuum a tedy lze použ́ıt nástroje mechaniky
kontinua. Z matematického popisu zákon̊u zachováńı a z konsti-
tutivńıch vztah̊u pak odvod́ıme Navierovy-Stokesovy (NS) rovnice
pro stačitelné tekutiny, které představuj́ı soustavu nelinárńıch par-
ciálńıch diferenciálńıch rovnic parabolicko-hyperbolického typu.

Vzhledem k tomu, že existuj́ı pricipiálńı pot́ıže k nalezeńı ana-
lytického řešeńı tohoto problému, tak naš́ım ćılem je vývoj dosta-
tečně robustńı, přesné a efektivńı numerické metody pro řešeńı
Navierových-Stokesových rovnic. Z teoretických úvah, numer-
ických experiment̊u a rovněž i experimelntálńıch meřeńı plyne, že
řešeńı NS rovnic je po částech hladké ale může obsahovat nespo-
jitosti či strmé gradienty jako rázové vlny, kontaktńı nespojitosti,
mezńı vrstvy a úplavy, atd. Z tohoto d̊uvodu se domńıváme,
že nespojitá Galerkinova (DG) metoda je vhodná k numerickému
řešeńı NS rovnic.

DG metoda je založena na po částech polynomiálńı, ale nes-
pojité aproximaci, což vede k robustńım řešič̊um vysokého řádu
přesnosti, zejména v řežimech s převládaj́ıćı konvekćı. Nav́ıc je
zde velká volnost ve volbě prostorových śıt́ı, DG metoda umožňuje
pracovat s neregulárńımı́ a neuniformńımi śıtěmi (i anisotropńımi)
a r̊uznými stupni polynomiálńımi aproximaci na r̊uzných elemen-
tech. To umožňuje snadnou realizaci hp-adaptivńıch metod. Dále
lze snadno konstruhovat ortogonálńı báze a tedy diagonálńı mat-
ice hmotnosti, což má výhodu zejména při řešeńı nestacionárńıch
problémů. Konečně, ve spojeńı s blokovými typy předpodmı́ňova-
č̊u, DG metodu lze snadno paralelizovat.

Věnujeme se numerické analýze DG metody aplikované na
modelovou úlohu, která je reprezentována skalárńı nelineárńı kon-
vektivně-difusńı rovnićı. Představujeme několik variant DG meto-
dy a ukážeme, že numerické řešeńı konverguje k přesnému v př́ıpa-
dě, že krok śıtě konverguje k nule. Dále odvozujeme a priorńı
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odhady chyb, které nám dávaj́ı závislost řádu konvergence DG
metody na použitém stupni polynomiálńı aproximace a regularitě
přesného řešeńı. Řada numerických experiment̊u dává velmi do-
brou schodu s teoretickými výsledky.

V daľśı části aplikujeme nespojitou Galerkinovu metodu na
soustavu Navierových-Stokesových rovnic. Zvláštńı pozornost je
věnovýna diskretizaci difusńıch člen̊u a volbě okrajových podmı́-
nek, kde je situace mnohem komplikovaněǰśı než-li pro skalárńı
př́ıklad. Dále se věnujeme časové diskretizaci vyšš́ıho řádu, což
je třeba pro řešeńı nestacionárńıch problémů. Ukazujeme několik
numerických experiment̊u prouděńı nevazké i vazké tekutiny v
subsonických, transonických a supersonických režimech prouděńı.
Tyto numerické simulace ukazuj́ı na velký potenciál použit́ı DG
metody pro pr̊umyslové aplikace.

Nakonec se zabýváme anizotropńı adaptaćı śıt́ı (AMA), která
optimalizuje výpočetńı śıtě ve smyslu, že minimalizuje počet stup-
ň̊u volnosti pro danou toleranci na výpočetńı chybu. Rozv́ıj́ıme
matematickou teorii tohoto př́ıstupu, který je založen na splňeńı
nutné podmı́nky pro śı̌t. Dále upravujeme tuto velice obecnou
technologii pro př́ıpad simulaćı prouděńı vazkých stlačitelných
tekutin.

Na závěr předkládáme shrnut́ı dosažených výsledk̊u.
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1 Introduction

The field of computational fluid dynamics (CFD) has already had
a significant impact on science and engineering of fluid dynamics,
ranging from a role of aircraft design to simulation of a spread
pollution in the environment. The ultimate goal of the field of
CFD is to understand the physical events that occur in the flow
of fluids around and within designed objects. These events are
related to the action and reaction of phenomena such as dissi-
pation, diffusion, convection, shock waves, boundary layers and
turbulence.

In the field of aerodynamics, all of these phenomena are gov-
erned by the compressible Navier-Stokes equations. Many of the
most important aspects of these relations are nonlinear and, as a
consequence, often have no analytical solution. This, of course,
motivates the numerical solution of the associated partial differ-
ential equations.

The numerical solutions of the Navier-Stokes equations fre-
quently exhibit localised structures, such as propagating discon-
tinuities and sharp transition layers whose reliable numerical ap-
proximation presents a challenging computational task. Indeed,
in order to resolve such localised phenomena in an accurate and ef-
ficient way one has to use locally refined (adapted) computational
meshes.

Therefore, an efficient tool for the numerical simulation of com-
pressible flows has to contain a sufficiently robust and accurate
solver for the system of governing equations as well as a suitable
adaptive method. Within this thesis we develop an efficient tech-
nique for the numerical solution of the Navier-Stokes equations
which is based on a combination of the discontinuous Galerkin
method and the anisotropic mesh adaptation technique.

The content of the thesis is the following. Except a general in-
troduction to the problem of the numerical solution of the Navier-
Stokes equations, the thesis is a composition of twelve articles pub-
lished in international journals within last 10 years. Each articles
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corresponds to one section and all these sections are thematically
organised into three chapters:

• Chapter 2 – Numerical analysis of DGM,

• Chapter 3 – Application of DGM to the Navier-Stokes equa-
tions,

• Chapter 4 – Adaptive methods.

The list of articles forming the thesis with their citations is pre-
sented in Section 4.

1.1 Compressible Navier-Stokes equations

Let Ω ⊂ IRd be a bounded domain occupied by a viscous compress-
ible fluid and (0, T ) a time interval of interest. A motion of this
fluid is described by the system of the compressible Navier-Stokes
equations, which can be written in the so-called conservation form

∂w

∂t
+ ∇ · ~f(w) = ∇ · ~R(w,∇w) in (0, T )× Ω, (1)

where w : (0, T )×Ω → IRd+2 is the state vector, ~f = (f1, . . . , fd),
fs : IRd+2 → IRd+2, s = 1, . . . , d are the inviscid fluxes and
~R = (R1, . . . , Rd), Rs : IR(d+2)×(d+1) → IRd+2, s = 1, . . . , d
are the viscous fluxes. The components of the state vector w are
density, components of momentum and energy. The inviscid as
well as viscous fluxes are nonlinear functions of their arguments.
Symbols ∇ and ∇· mean the gradient and divergence operators,
i.e.,

∇w ≡
(

∂w

∂x1
, . . . ,

∂w

∂xd

)

∈ IRd+2 × . . . × IRd+2 (2)

and

∇ · ~f(w) ≡
d
∑

s=1

∂fs(w)

∂xs
∈ IRd+2, (3)

7



respectively. The system of equations (1) follows form conserva-
tion laws, namely a conservation of mass, momentum and energy.
In order to a close the problem, we consider thermodynamical re-
lations (form of the stress tensor, state equation for perfect gas)
and include a set of initial and boundary conditions. The com-
plete derivation of the system of the Navier–Stokes equations can
be found, e.g., in [21] or [43].

The compressible Navier-Stokes equations represent a nonlin-
ear system of hyperbolic-parabolic type. During last teens years,
a great progress was achieved in the question of the existence of
the solution of problem (1). For a survey of theoretical results,
see, e.g., monographs [35], [18], [33]. We only remark, that the
existence of the solution of (1) accompanied by the state equation
for perfect gas is still open. Nevertheless, we deal with a numerical
solution of problem (1) in the rest of this thesis.

1.2 Numerical methods

In computational fluid dynamics, the finite volume method (FVM)
is rather popular. (Cf., [15], [17], [19], [20], [21], [31] for refer-
ences.) It seems that for conservation laws with discontinuous
solutions the finite volume method, using piecewise constant ap-
proximations, is very suitable, because the FV approximations are
discontinuous on interelement interfaces, which allows good reso-
lution of shock waves and contact discontinuities. However, the
increase of accuracy in finite volume schemes applied on unstruc-
tured and/or anisotropic meshes is problematic.

On the other hand, the most popular numerical method for
a solution of partial differential equations is the finite element
method (FEM). This technique is suitable for problems with suffi-
ciently regular solutions. However, singularly perturbed problems
or nonlinear conservation laws have solutions with steep gradients
or discontinuities and their approximations by conforming finite
elements may suffer from the Gibbs phenomenon manifested by
spurious oscillations propagating from boundary or interior lay-
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ers into the computational domain. One way how to avoid this
drawback is to use a suitable stabilization as, e.g. the streamline
diffusion method or Galerkin least squares method and shock cap-
turing stabilization. (For a survey, see [21, Chapter 4].) If these
techniques are applied to systems of partial differential equations,
e.g. of compressible flow, the form of the stabilization terms is
rather complex and several parameters have to be tuned.

A generalization of the FV and FE approaches is the discontin-
uous Galerkin method (DGM). This technique is based on the idea
to approximate the solution of an initial-boundary value prob-
lem by piecewise polynomial functions over a FE mesh, without
any requirement on interelement continuity. The original DGM
method was introduced by Reed and Hill ([37]) for the solution of
the neutron transport equation. The first analysis of this method
was made by Le Saint and Raviart ([32]), later an improvement
was achieved by Johnson and Pitkäranta ([27]). The DGM was
applied to nonlinear conservation laws already in 1989 by Cock-
burn and Shu ([12]). Their approach uses advantages of FEM and
FVM with an approximate Riemann solver. During several recent
years the discontinuous Galerkin schemes have been extensively
developed. For a survey, see e. g. [10], [11]. An important ques-
tion is the discretization of diffusion terms in the framework of
the DGMs. There exist various treatments of this problem. One
possibility is to apply a mixed formulation, used, e. g., in [8]. Its
disadvantage is a large number of unknowns. Another method is
a direct discretization used, e. g., in [2], [36] and [26]. In [1], an ex-
cellent survey of the existing discontinuous Galerkin methods was
presented and a unified analysis of DGMs for elliptic problems
developed.

A great progress in the applications of DGM to the compress-
ible flow simulation was achieved in the last 10 years, see [3], [4],
[5], [6], [13], [16], [22], [23], [24], [25], [28], [29], [34], [40], [41]
and the references cited therein. DGM allows on a given mesh to
improve a prediction of crucial flow phenomena, such as bound-
ary layers including transition, drag forces, wakes, vortical flows
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and interaction phenomena like blade/vortex interaction. On the
other hand, the disadvantage of discontinuous Galerkin techniques
is a high computational complexity since DGM requires more de-
grees of freedom than standard FEM in order to achieve the same
piecewise polynomial approximation. Nevertheless, we suppose
that DGM has still an unused potential which should be used for
industrial applications

2 Summary of the thesis

Within this section, we summarise this thesis dealing with an
analysis of DGM applied to a convection-diffusion equation and its
application to the compressible flow simulation. Let Th, h > 0 be
a partition of the computational domain Ω into mutually disjoint
elements K, i.e., Ω =

⋃

K∈Th
K. We call Th a triangulation of

Ω and do not require the conforming properties from the finite
element method, see [9], [39]. As usually, h = maxK∈Th

diam(K).
Over the triangulation Th, we define the so-called broken Sobo-

lev space

Hs(Ω, Th) ≡ {v; v|K ∈ H (K) ∀K ∈ Th} (4)

with the norm

‖v‖Hs(Ω,Th) ≡
(

∑

K∈Th

‖v‖2
Hs(K)

)1/2

(5)

and the seminorm

|v|Hs(Ω,Th) ≡
(

∑

K∈Th

|v|2Hs(K)

)1/2

, (6)

where s ≥ 1 and ‖ · ‖Hs(K) and | · |Hs(K) denotes norm and semi-
norm of the Sobolev space Hs(K) ≡ W s,2(K), respectively.
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Furthermore, we define the space of discontinuous piecewise
polynomial by

Shp ≡ {v; v ∈ L2(Ω), v|K ∈ Pp(K) ∀K ∈ Th}, (7)

where Pp(K) denotes the space of all polynomials on K ∈ Th of
degree ≤ p.

2.1 Chapter 2 – Numerical analysis

In order to simplified the numerical analysis, we consider the
scalar nonstationary convection-diffusion equation

∂u

∂t
+ ∇ · ~f(u) = ε∆u + g, (8)

where u : (0, T ) × Ω → IR, ~f : IR → IRd is a nonlinear func-
tion of its argument, ε > 0 play role of the viscosity and g ∈
C([0, T ]; L2(Ω)) is a source term. Moreover, we prescribe a Dirich-
let and/or Neumann boundary conditions and an initial condition.
The problem (8) represents a model problem of the Navier-Stokes
equations. With the aid of techniques from [38] and [33], it is
possible to prove that there exists a unique weak solution of (8).

In Section 2.1 we develop the so-called finite volume discon-
tinuous Galerkin (FVDG) method, where the approximate solu-
tion is sought in the space of piecewise linear discontinuous finite
elements. Moreover, the convective terms are approximated with
the aid of a numerical flux well-known from FVM, where a piece-
wise constant projection is employed. Then the FVDG method
reads: Find uh : (0, T ) → Sh1 such that

i)
d

dt
(uh, vh) + aN

h (uh, vh) + bh(π0
huh, vh) + Jh(uh, vh)

= ℓ(vh) ∀vh ∈ Shp, t ∈ (0, T ),

ii) (uh(0), vh) = (u0, vh), (9)

where (·, ·) denotes the L2-scalar product, the linear non-symmet-
ric form aN

h (·, ·) represents the discretization of the diffusive term
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by the nonsymmetric variant of the DG method, the nonlinear
form bh(·, ·) represents the discretization of convective terms, the
linear form Jh(·, ·) represents the interior and boundary penalties
and ℓ(·) is the right-hand-side containing source terms and terms
arising from the boundary conditions. Moreover, π0

h is the L2-
projection into the space of piecewise constant functions and u0 :
Ω → IR is the initial condition. Problem (9) represents a system of
ordinary differential equations which should be solved by suitable
solver.

Within this section we analyse the FVDG scheme. Let u be
the weak solution of problem (8) satisfying assumptions

u ∈ L2(0, T ; H2(Ω)),
∂u

∂t
∈ L2(0, T ; H1(Ω)), (10)

uh(t) ∈ Sh1, t ∈ (0, T ) be the approximate piecewise linear solu-
tion obtained by (9) and eh(t) ≡ u − uh. We derive a priori error
estimate in the form

sup
t∈[0,T ]

‖eh(t)‖2
L2(Ω) + ε

∫ T

0

|eh(ϑ)|2H1(Ω,Th)dϑ ≤ C1h
2|u|2H2(Ω),

(11)
where C1 = O(exp(1/ε) is independent of u and h. It is clear
that estimate (11) cannot be used for ε → 0+, because it blows
up exponentially. The nonlinearity of the convective terms rep-
resents a serious obstacle for obtaining a uniform error estimate
with respect to ε → 0+.

Moreover, numerical experiments from Section 2.1 verify that
the presented FVDG method has the first order of accuracy as the
theoretical estimate (11). However, it is not possible to increase
the order of accuracy by a higher order of polynomial approxima-
tion (i.e., Shp with p ≥ 2) since FVDG method uses the piecewise
constant projection in the numerical flux approximating convec-
tive terms.

Therefore, in Section 2.2 we develop the so-called discon-
tinuous Galerkin finite element (DGFE) method. Similarly as in
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FVDG method we employ the nonsymetric treatment of the diffu-
sive term with an interior and boundary penalties. This technique
is in literature denoted as NIPG (nonsymmetric interior penalty
Galerkin) method. On the other hand, the convective terms are
approximated with the aid of numerical flux but without the piece-
wise constant projection. Then the DGFE method reads: Find
uh : (0, T ) → Sh1 such that

i)
d

dt
(uh, vh) + aN

h (uh, vh) + bh(uh, vh) + Jh(uh, vh)

= ℓ(vh) ∀vh ∈ Shp, t ∈ (0, T ),

ii) (uh(0), vh) = (u0, vh), (12)

where (·, ·), aN
h (·, ·), bh(·, ·), Jh(·, ·) and ℓ(·) denotes the forms

introduced in (9).
We derive the following error estimate. Let u be the weak

solution of problem (8) satisfying

∂u

∂t
∈ L2(0, T ; Hp+1(Ω)), (13)

uh(t) ∈ Shp, t ∈ (0, T ) be the approximate piecewise polynomial
(degree ≤ p) solution obtained by (12) and eh(t) ≡ u − uh. Then

sup
t∈[0,T ]

‖eh(t)‖2
L2(Ω) + ε

∫ T

0

|eh(ϑ)|2H1(Ω,Th)dϑ ≤ C2h
2p|u|2Hp+1(Ω),

(14)
where C2 = O(exp(1/ε) is independent of u and h. We observe
that (14) is optimal (O(hp)) with respect to the H1-seminorm but
sub-optimal (O(hp)) with respect to the L2-norm. This is caused
by the use of the nonsymmetric variant (NIPG) which gives the
corresponding diffusive form nonsymmetric and therefore it is not
possible to use the well-known Aubin-Nitsch theorem. On the
other hand, numerical experiments presented in Section 2.2 and
also in [14] indicate that the odd degrees of polynomial approx-
imations give the optimal experimental order of convergence in
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the L2-norm (O(hp+1)) whereas the even degrees of polynomial
approximations only the suboptimal one (O(hp)).

In order to achieve the optimal orders of convergence in the L2-
norm, we employ the symmetric interior penalty Galerkin (SIPG)
variant of DGFE method in Section 2.3 when the non-symmetric
form aN

h (·, ·) in (12) is replaced by its symmetric variant aS
h(·, ·).

Then with the aid of the Aubin-Nitsch theorem we obtain (pro-
vided that the weak solution satisfy (13)) a priori error estimates

sup
t∈[0,T ]

‖eh(t)‖2
L2(Ω) ≤ C3h

2p+2|u|2Hp+1(Ω), (15)

where C3 = O(exp(1/ε) is independent of u and h. Numerical
experiments presented within the same section verify the theoret-
ical orders of convergence. Moreover, these numerical experiments
indicate the error estimate

sup
t∈[0,T ]

‖eh(t)‖2
L2(Ω) ≤ C4h

2µ|u|2Hs(Ω), (16)

where C4 > 0, µ = min(p + 1, s) and Hs(Ω), s > 0 denotes (in
general) the Sobolev-Slobodetskii space of functions with ”non-
integer derivatives”. This error estimate should be used in case
when the weak solution is not sufficiently regular.

The previous theoretical results (11) – (15) are based on the
assumptions of regularity of the exact solution. Nevertheless, it
is interesting to observed how the DG schemes behaves in case
when the exact solution is discontinuous or contains steep gradi-
ents (e.g., interior or boundary layers). In Section 2.4 we apply
the FVDG and DGFE methods from Sections 2.1 and 2.2, respec-
tively, to the viscous Burgers equation whose solution contains
interior layers. Whereas the piecewise constant projection em-
ployed in FVDG method give a reasonable numerical approxima-
tion, the DGFE method produces a numerical solution suffering
from unphysical overshoots and undershoots in vicinity of the in-
terior layers (this phenomenon is called the Gibbs effect). There-
fore, we develop a limiting of degree of approximation based on
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the so-called jump indicator. The presented numerical examples
indicate that this technique does not decrease an order of accu-
racy in parts of the computational domain, where the solution
is smooth, and moreover, it avoids the Gibbs effect. This lim-
iting technique is extended to the solution of the system of the
Navier-Stokes equations in Section 3.1.

In Sections 2.1 – 2.4, we consider the scalar equation (8), where
the diffusion is linear. In Section 2.5, we deal with a more general
case where the diffusion is quasilinear, i.e., we seek u : (0, T )×Ω →
IR such that

∂u

∂t
+ ∇ · ~f(u) = ∇ · ~R(u,∇u) + g, (17)

where ~f : IR → IRd, ~R : IR × IRd → IRd and g ∈ C([0, T ]; L2(Ω)).

The nonlinear dependence of the viscous terms ~R(u,∇u) on ∇u
does not allow to employ the NIPG as well as SIPG variants of
the DGFE method. Therefore, we use the so-called incomplete
interior penalty Galerkin (IIPG) variant of the DGFE method
and derive the same a priori error estimates as in (14). The IIPG
technique does not allow to obtain the optimal L2-error estimate
as NIPG. On the other hand, the numerical experiments carried
out is Section 2.5 give higher experimental orders of convergence
than the theoretical ones.

Section 2.6 deals with the so-called discrete Friedrichs in-
equality for piecewise linear Crouziex-Raviart nonconforming fi-
nite elements. Let Th be a triangular grid of a computational
domain Ω ∈ IR2 and Fh the corresponding set of all edges of tri-
angles K ∈ Th. We denote by xΓ a centre of Γ ∈ Fh. We define
the following finite element spaces:

Xh ≡ {vh ∈ L2(Ω); vh|K ∈ P 1(K), K ∈ Th, (18)

vh is continuous at each xΓ, Γ ∈ Fh},
Xh0 ≡ {vh ∈ Xh; vh(xΓ) = 0 ∀xΓ ∈ ∂Ω, Γ ∈ Fh}.

Then the discrete Friedrichs inequality claims that there exists a
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constant c̃ > 0 independent of h such that

‖vh‖L2(Ω) ≤ c̃|vh|H1(Ω,Th) ∀vh ∈ Xh0, (19)

where ‖ ·‖L2(Ω) is the standard norm in the Lebesgue space L2(Ω)
and |·|H1(Ω,Th) is the norm in the broken Sobolev space introduced
by (6).

Within this section we prove the discrete Friedrich inequality
(19) for the case when Ω is a general polygonal nonconvex do-
main. This results has applications in the numerical analysis of
convection-diffusion problems approximated with the aid of non-
conforming finite elements. Moreover, this inequality was gener-
alized by some authors, see, e.g, [30], [42], [7].

2.2 Chapter 3 – Application to compressible
flow simulations

In Section 3.1, we apply the DGFE method to the system of the
Navier-Stokes equations (1). We implement a discontinuous piece-
wise linear approximation of the NIPG variant. A special atten-
tion is paid to the choice of the stabilization term, the boundary
conditions, the limiting of the degree of approximation and a treat-
ment of nonpolygonal parts of the boundary. We present numer-
ical examples of subsonic, transonic and supersonic flow regimes
and obtain a good comparison with reference solutions. The main
drawback of this method is the explicit time discretization which
is simple for implementation but the size of the time step is very
limited. Therefore, it is necessary to carried out a high number
of time steps in order to achieve a steady state solution.

In order to avoid the time step restriction mentioned in Sec-
tion 3.1, it is suitable to use an implicit time discretization, e.g.,
[5], [24], [25]. However, a full implicit scheme leads to a necessity
to solve a nonlinear system of algebraic equations at each time
step which is rather expensive. Therefore, we propose in Section
3.2 a semi-implicit method for the solution of the Euler equa-
tions. This technique is based on a suitable linearization of the
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Euler fluxes. The linear terms are treated implicitly whereas the
nonlinear ones explicitly which leads to a linear algebraic problem
at each time step. The presented numerical examples indicate an
enormous gain (from the point of view of the computational time)
in comparison with an explicit discretization for steady-state com-
putations.

In Section 3.3, we extend the semi-implicit time discretiza-
tion to the viscous flow simulations, i.e., we carry out a lineariza-
tion also of the viscous terms. Moreover, in order to increase the
accuracy of the time discretization, we employ the so-called back-
ward difference formulae (BDF). We call the resulting scheme the
BDF-DGFE method, which is practically unconditionally stable,
has a high order of accuracy with respect to the space and time
coordinates and requires a solution only of one linear algebraic
problem at each time step. Since we solve an evolution prob-
lem, it is suitable to employ an iterative solver for the solution
of these linear algebraic problems. It is possible to use a solution
from the previous time step as an approximation of the solution
on the new time level and, moreover, a suitable preconditioner
can be evaluated after several time steps. This strategy highly
decrease the computational time. We present a set of numerical
experiments of steady as well as unsteady flows using piecewise lin-
ear, quadratic and cubic polynomial approximations for the space
semi-discretization and the two- and three-steps BDF for the time
discretization. These numerical examples show a good agreement
with reference results.

2.3 Chapter 4 – Adaptive methods

Most of the computations presented in Sections 3.1 – 3.3 were
carried out on adaptively refined grids, which were obtained by
the anisotropic mesh adaptation (AMA). This method exhibits
a very efficient tool for compressible flow simulations and it is
described in Section 4.1. AMA technique minimises a mesh
quality parameter QTh

by an iterative process. The mesh quality
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parameters QTh
is defined by

QTh
≡ 1

#Th

∑

K∈Th

∑

Γ∈∂K

(|Γ|H − ω)2 , (20)

where the sum is taken over all edges Γ of elements K ∈ Th, #Th

denotes the number of elements of Th, ω > 0 is a given constant
and |Γ|H is a size of edge Γ measured in the Riemann metric
generated by the Hessian matrix H = H(uh). The matrix H(uh)
is evaluated for each Γ from a “smoothed” numerical solution
uh. The AMA technique is completely method-independent and
problem-independent approach and, therefore, it can be applied
to various finite element/volume solutions of partial differential
equations. A drawback of this technique is that we have no bound
for the computational error.

A theoretical background of AMA approach is developed in
Section 4.2. Let us considered a general boundary value prob-
lem (BVP) defined on a computational domain Ω. Let Th be a
triangular grid of Ω, V and Vh be functional spaces where an exact
and an approximate solutions u and uh are sought, respectively.

We require that the computational error eh ≡ u−uh is bound-
ed by a given tolerance ω > 0, i.e,

‖eh‖X = ‖u − uh‖X ≤ ω, (21)

where ‖·‖X is a suitable norm. We define a mapping Πh : V → Vh

by

v ∈ V, Πhv ∈ Vh : ‖v − Πhv‖X = min
wh∈Vh

‖v − wh‖X . (22)

Let us emphasise that the mapping Πh depends on the exact so-
lution u, the norm ‖ · ‖X , the finite dimensional space Vh and
therefore on the mesh Th. On the other hand, the mapping Πh is
independent of the approximate solution uh. Obviously,

‖u − Πhu‖X ≤ ‖u − uh‖X (23)
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and therefore, the necessary condition to fulfil (21) is

‖u − Πhu‖X ≤ ω. (24)

The main idea of the AMA method is the following: to construct
a mesh Th such that

i) the necessary condition (24) is satisfied,

ii) the number of elements of mesh Th is minimal.

The condition ii) follows from a natural requirement to use a
smallest possible number of degree of freedom in order to save
a computational time and memory of a computer.

Based on several simplifications and assumptions we arrive to
a definition of an optimal mesh Th by the relation

QTh
= 0, (25)

where QTh
is the quality parameters defined by (20) with the Hes-

sian matrices H = H(u) of the exact solution. However, the exact
solution u is not know a priori. Therefore, we apply a smoothing
procedure to the approximate solution uh and the mesh adap-
tation algorithm from Section 4.1. Moreover, we present several
numerical experiments dealing with the Poisson equation where
the efficiency of the AMA technique is demonstrated.

Section 4.3 deals with an application of the AMA method to
viscous compressible flow simulations. The presented numerical
experiments indicate that the AMA technique is not able to cap-
ture thin boundary layers and wakes, namely for flows with high
Reynolds numbers Re. Therefore, we take into account physical
properties of viscous compressible flows, namely the thickness of
boundary layers (≈ 1/

√
Re). Then, the AMA algorithm gener-

ates triangular grids where the low viscosity flows can be resolved
very well. Moreover, we introduce two variants of a smoothing
procedure which improve computational results.
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3 Summary of the results

We dealt with the numerical solution of the compressible Navier-
Stokes equations describing viscous compressible flows. This nu-
merical scheme is based on the discontinuous Galerkin method
employing a discontinuous piecewise polynomial approximation
which is suitable for capturing of piecewise regular solutions con-
taining discontinuities. The results achieved within this thesis are
summarised in the following list.

Numerical analysis:

• In Sections 2.1 and 2.2, we presented and developed the
discontinuous Galerkin method for the solution of a scalar
time-dependent convection-diffusion equation with a nonlin-
ear convection and a linear diffusion (−ε∆u). The presence
of the nonlinear convection leads to error estimates of order
O(exp(1/ε)) which blow up exponentially for ε → 0.

• In Section 2.2, we derived a priori error estimates of order
O(hp) in the L2-norm and the H1-seminorm, where h is the
step of the mesh and p is the degree of polynomial approx-
imation. The sub-optimality of the error estimates in the
L2-norm is caused by the nonsymmetric treatment of the
diffusive terms which leads to a nonsymmetric bilinear form
and then it is not possible to employ the Aubin-Nitsch the-
orem. On the other hand, numerical experiments show the
optimal order of convergence O(hp+1) in the L2-norm for
odd degrees of polynomial approximations.

• The symmetric treatment of the diffusive term from Section
2.3 leads to optimal error estimates (O(hp+1)) also in the L2-
norm. Nevertheless, a regularity assumption of the solution
of the dual problem is required. This results were verified
by numerical experiments.

• We showed in Section 2.4 that DGM produces numerical so-
lution suffering from the Gibbs phenomenon in case when
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the exact solution contains discontinuities and/or steep gra-
dients. Therefore we developed a technique based on limit-
ing of the order of polynomial approximation which avoids
the Gibbs effect and does not decrease an order of accuracy
in region where the exact solution is smooth.

• In Section 2.5 we apply the DGM to a scalar convection-
diffusion equation with a nonlinear diffusion ∇ · ~R(u,∇u),

where ~R(·, ·) is a nonlinear function of its arguments. The
presence of the nonlinear diffusive term does not allow to
use the nonsymmetric as well as symmetric variants of DGM
(Sections 2.2 and 2.3) hence we employed the so-called in-
complete variant of DGM. We derived hp error estimate of
order O(hµ), where µ = min(p, s), p is the degree of polyno-
mial approximation and s ≥ 2 represents a regularity of the
exact solution, i.e., u ∈ Hs(Ω).

• The discrete Friedrichs inequality proved in Section 2.6 for
non-convex domains plays an important role in numerical
analysis of nonconforming finite element. It allows estimate
the L2-norm by a discrete variant of the H1-seminorm.

Solution of the Navier-Stokes equations

• We apply the discontinuous Galerkin method analysed in
Chapter 2 to the Navier-Stokes equations. In Section 3.1,
we presented an original treatment of diffusive terms and
boundary conditions within the DGM framework. The re-
sulting numerical scheme gives an accurate numerical simu-
lations of steady state flows in subsonic, transonic and su-
personic flow regimes. The main drawback of this approach
is a strong restriction to the size of the time step since the
explicit temporal discretization was used.

• In order to avoid the time step restriction, we developed in
Sections 3.2 and 3.3 an original semi-implicit scheme, where
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the inviscid as well as fluxes are formally linearized and,
consequently, the linear terms are treated implicitly and
the nonlinear ones by an higher order explicit extrapola-
tion. The resulting scheme, called backward difference for-
mulae - discontinuous Galerkin finite element (BDF-DGFE)
method, is practically unconditionally stable, has a high or-
der of accuracy with respect to the space and time coor-
dinates and requires a solution only of one linear algebraic
problem at each time step. The numerical experiments are
in a good agreement with reference results for steady as well
as unsteady flow regimes.

Adaptive method

• The anisotropic mesh adaptation (AMA) method presented
in Sections 4.1 – 4.3 represents an efficient tool for the nu-
merical solution of partial differential equations. Although
this approach does not give an error bound, the flexibility
and universality of this technique allow a wide use of AMA
in the computational sciences. This method is a base of the
software package ANGENER which was implemented by the
author and it is freely available. Till now, there are more
than 50 registered ANGENER users over the world, see the
enclosed list.

Although the BDF-DGFE method give promising results there
is still a lot of open problems which are the subject of further
research.
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nite element approximation of quasilinear elliptic boundary
value problems I: The scalar case. IMA J. Numer. Anal.
25, No. 4, 726-749, 2005

[Q2] Y. Xu, C.W. Shu: Error estimates of the semi-discrete lo-
cal discontinuous Galerkin method for nonlinear convection
- diffusion and KdV equations, Comput. Methods Appl.
Mech. Eng, 196 (37-40): 3805-3822, 2007

[Q3] T. Gudi, N. Nataraj, A. K. Pani: An hp-local discontinu-
ous Galerkin method for some quasilinear elliptic boundary
value problems of nonmonotone type, Mathematics of Com-
putations, 77 (262): 731-756, 2008

23
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tos y Mallas no Estructuradas: Simulación Numérica de
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tion of flow induced airfoil vibrations with large amplitudes,
Journal of Fluids and Structures 23 (3): 391-411, 2007

[Q10] L. Chen, P. T. Sun, J. C. Xu: Optimal anisotropic meshes
for minimizing interpolation errors in L-p-norm, Mathemat-
ics of Computation 76 (257): 179-204, 2006

[Q11] J. C. Aguilar, J. B. Goodman: Anisotropic mesh refine-
ment for finite element methods based on error reduction
J. Comput. Appl. Math. 193 (2): 497-515, 2006.

[Q12] M. Randrianarivony: Geometric processing of CAD data
and meshes as input of integral equation solvers, PhD The-
sis, Technische Universität Chemnitz, Computer Science
Faculty, 2006
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