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1. Introductory remarks

This thesis consists of a collection of eleven articles, ten of them published during

the last five years, that have a relevance to the mathematical analysis of flows of
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incompressible fluids with the viscosity depending on the pressure and the shear-

rate. The collection, completed by the introductory text that summarizes the main

results, is formed by the following papers:
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[D1] J. Hron, J. Málek, and K. R. Rajagopal. Simple flows of fluids with pressure

dependent viscosities. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.

IF†(1.326), 457:1603–1622, 2001.
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The organization of the thesis is as follows. Firstly, we briefly describe the results

and methods obtained and developed in [D1]–[D11].

At the first glance, incompressible fluids with pressure dependent viscosity can

look as curiosities rather than physically well-sounded models. This point of view

can even be supported by expositions on constraints in classical textbooks on conti-

nuum mechanics. For this reason, we discuss physical aspects of the models that are

the object of our study in detail in Section 2. We introduce them taking two totally

different points of view into account. Firstly, we derive the constitutive equation for

the relevant form of the Cauchy stress using a suitable thermodynamic framework.

Then we identify the same models within the framework of implicit constitutive

theories. We also look at these models from historical perspective and provide a

representative collection of experimental works supporting the viscosity-pressure

relationships for incompressible fluids.

In Section 3 we shall provide a more detailed survey of the mathematical results

concerning the analysis of the selected models; both the steady flows of fluids sa-

tisfying Dirichlet boundary conditions and the unsteady flows of these fluids under

spatially periodic or Navier’s slip boundary conditions will be considered. We also

describe developed techniques.

Finally, in Section 4 we indicate why we think that the studies of the consid-

ered models are of importance and interest and we summarize the main novelties

achieved in the above papers.



4 J. Málek

A brief survey of the results in this collection and some other relevant results

The article [D1] discusses the pressure-dependent fluid models from the point

of view of their relevance to mechanics, and provides a survey of experimental

works suggesting and supporting the idea to model behavior of fluid-like materi-

als, particularly those subject to high pressures, as an incompressible fluid with

the viscosity depending on the pressure. In addition, some interesting explicit so-

lutions for steady flows of such fluids (for example those with an exponential or

linear viscosity-pressure relationship) are computed†, and results of first numerical

simulations are presented. These results show that the computed solutions have

markedly different characteristic than the corresponding solutions to the classical

Navier-Stokes fluid. The article [D1] has been a departure for our further research

on analysis of relevant systems of partial differential equations (PDEs) that appear

in this area.

To date there have been a few mathematically rigorous studies concerning fluids

with pressure dependent viscosity. To our knowledge, to date there is no global

existence theory that is in place for both steady and unsteady flows of fluids whose

viscosity depends purely on the pressure. Previous studies by Renardy [55], Gazzola

[22] and Gazzola and Secchi [23] either addressed existence of solutions that are both

short-in-time and for small data or presume apriori (see [55]) that the solution ought

to have certain properties while trying to establish the existence of solutions. We

discuss this in more detail later (see Section 3).

The articles [D2], [D3] are the first ones where the long-time and large-data

existence theory for incompressible fluids with pressure dependent viscosity were

established. The paper [D2] deals with three-dimensional (unsteady) flows, in [D3]

two-dimensional time-dependent flows are analyzed. The results are based on an

observation that ”adding” a suitable (sublinear) dependence of the viscosity on the

shear rate may help, and on experiences achieved in analysis of time-dependent

models with such sublinear dependence of the viscosity on the shear rate, see the

monograph Málek et al. [38] and the papers Málek, Nečas, Růžička [37], Bloom,

Bellout, Nečas [7], Frehse, Málek and Steinhauer [21], and the article [D9]. The

fact that in [D2] and [D3] the governing equations are considered in the rather

† Vasudevaiah and Rajagopal [66] also considered the fully developed flow of a fluid that has

a viscosity that depends on the pressure and shear rate in a pipe and were able to obtain explicit

exact solutions for the problem, see also Renardy [56].
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unrealistic spatially periodic setting can be considered as a ”drawback” of these

results.

More realistic internal flows are considered in the articles [D4] and [D5]. The

paper [D4] deals with steady flows where the velocity satisfies the no-slip condition

on the boundary. In [D5], long-time and large-data existence results for unsteady

flows with the velocity fulfilling Navier’s slip boundary conditions are established.

The results as well as the difficulties to extend this theory to unsteady flows flufilling

no-slip boundary consditions are addressed in Section 3.

The questions of further qualitative properties of solutions are more or less com-

pletely open in this area. In [D8], the authors observed that the assumptions on the

viscosity required by the considered mathematical approach include some models

where the Cauchy stress can grow linearly with the velocity gradient. Consequently,

two-dimensional unsteady flows of such fluids are uniquely determined by their data

and the solution operators form a semigroup. The long-time behavior of all solutions

can then be investigated. Here, the authors incorporated the method of trajectories,

a promising tool for studying long-time behavior of infinite-dimensional dynamical

systems, and established the existence of a finite-dimensional global attractor, and

the existence of an exponential attractor. The upper bound on the dimension of

the attractor is also achieved. The method of trajectories is described in detail in

[D7].

Higher differentiability and partial regularity of solutions are currently investi-

gated by Málek, Mingione and Stará (see [35] for the announcement of the result).

For fluids whose viscosity depends purely on the shear rate higher differentiability

techniques were developed in the original papers [D9]–[D11]. More precisely, the ar-

ticle [D9] extends the results valid for spatially periodic setting (see the monograph

Málek et al [38], and the papers [37] and [7]) to the homogeneous Dirichlet problem

(no slip boundary condition). In [D10], C1,α-regularity for the velocity of two-

dimensional steady flows is established (again for homogeneous Dirichlet problem).

In both studies the results on regularity are established up to the boundary, i.e.,

they are global. In [D11], C1,α-regularity for the velocity of two-dimensional un-

steady flows is established (here for simplicity the spatially periodic case is treated).

The study of partial regularity for problems concerning fluids with pressure depen-

dent viscosity initiated the analysis (existence, uniqueness, regularity) of a system

of Stokes type where the Laplace operator is replaced by a general elliptic opera-
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tor of second order with bounded measurable coefficients, and the gradient of the

pressure is replaced by a general linear operator of first order. We refer to Huy and

Stará [27] and the recent Ph.D. thesis by Huy [26] for details. The extension of the

theory established in [D5] to models where the viscosity depends on the pressure,

the shear rate and the temperature is performed in the recent Ph. D. thesis by

Buĺıček [11].

In the existence theory for non-linear partial differential equations, a key step

represents the stability of nonlinear quantities with respect to weakly converging

sequences. It is well known that weakly converging sequences do not commute with

nonlinearities. For this purpose, several methods as for example monotone opera-

tor techniques, compact embedding theorems, regularity methods, div-curl lemma,

parametrized (Young) and defect measures were developed. In these approaches it

may happen that one is not allow to test by solution (or by the difference between

the solution and its approximation) and suitably truncated (it means bounded)

functions are used. In order to go beyond the limitations coming from their use,

Lipschitz truncations can be incorporated. More details are given in Chapter 3.

The paper [D6] addresses this issue in the analysis of power-law-like fluids. The

approach has been recently simplified by Diening, Málek and Steinhauer in [14] by

strengthening the properties of the Lipschitz truncations of Sobolev functions. The

extension of this method to the system describing steady flows of incompressible

fluids with the viscosity depending on the pressure and the shear rate is the topic

of current research.

2. Models and their physical aspects

(a) Kinematics and balance equations

We shall keep our discussion of kinematics to a bare minimum. Let B denote the

abstract body and let κ : B → E , where E is three dimensional Euclidean space, be

a placer and κ(B) the configuration (placement) of the body. We shall assume that

the placer is one to one. By a motion we mean a one parameter family of placers. It

follows that if κR(B) is some reference configuration, and κt(B) a configuration at

time t, then we can identify the motion with a mapping χκR
: κR(B) × R → κt(B)

such that

x = χκR
(X, t) . (2.1)
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We shall suppose that χκR
is sufficiently smooth to render the operations defined

on it meaningful. Since χκR
is one to one, we can define its inverse so that

X = χ−1
κR

(x, t) . (2.2)

Thus, any (scalar) property ϕ associated with an abstract body B can be expressed

as (analogously we proceed for vectors or tensors)

ϕ = ϕ(P, t) = ϕ̂(X, t) = ϕ̃(x, t) . (2.3)

We define the following Lagrangean and Eulerian temporal and spatial derivatives:

ϕ̇ :=
∂ϕ̂

∂t
, ϕ,t :=

∂ϕ̃

∂t
, ∇Xϕ =

∂ϕ̂

∂X
, ∇xϕ :=

∂ϕ̃

∂x
. (2.4)

The Lagrangean and Eulerian divergence operators will be expressed as Div and

div, respectively.

The velocity v and the acceleration a are defined through

v =
∂χκR

∂t
a =

∂2χκR

∂t2
, (2.5)

and the deformation gradient FκR
is defined through

FκR
=
∂χκR

∂X
. (2.6)

The velocity gradient L and its symmetric part D are defined through

L = ∇xv , D =
1

2
(L + LT ) . (2.7)

It immediately follows that

L = ḞκR
F−1

κR
. (2.8)

It also follows from the notations and definitions given above, in particular from

(2.4) and (2.5), that

ϕ̇ = ϕ,t + ∇xϕ · v . (2.9)

Balance of Mass - Incompressibility - Inhomogeneity

A body is incompressible if

∫

PR

dX =

∫

Pt

dx for all PR ⊂ κR(B) with Pt := χκR
(PR, t) .
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Using the change of variables theorem, it leads to

detFκR
(X, t) = 1 for all X ∈ κR(B) . (2.10)

If detFκR
is continuously differentiable with respect to time, then by virtue of the

identity
d

dt
detFκR

= div v detFκR
,

we conclude, since detFκR
6= 0, that

div v(x, t) = 0 for all t ∈ R and x ∈ κt(B) . (2.11)

It is usually in the above form that the constraint of incompressibility is enforced

in fluid mechanics.

The balance of mass in its Lagrangean form states that

∫

PR

%R(X)dX =

∫

Pt

%(x, t)dx for all PR ⊂ κR(B) , (2.12)

where %R and % stand for the density at the reference and current configuration,

respectively. Using again the change of variables theorem, (2.12) leads to

%(x, t) detFκR
(X, t) = %R(X) . (2.13)

From the Eulerian perspective, the balance of mass takes the form

d

dt

∫

Pt

% dx = 0 for all Pt ⊂ κt(B) . (2.14)

It immediately follows (for smooth functions) that

%,t + (∇x%) · v + % div v = 0 ⇐⇒ %,t + div(%v) = 0 . (2.15)

If the fluid is incompressible, (2.15) simplifies to†

%,t + (∇x%) · v = 0 ⇐⇒ %̇ = 0 ⇐⇒ %(x, t) = %(0, X) = %R(X) . (2.16)

That is, for a fixed particle, the density is constant, as a function of time. However,

the density of a particle may vary from one particle to another. The fact that the

density varies over certain region of space, does not imply that the fluid is not

incompressible. This variation is due to the fact that the fluid is inhomogeneous.

We say that a fluid is homogeneous if %R(X) = %R(Y ) for all X , Y ∈ κR(B). Thus,

† Note that the last equation in (2.16) can be obtained from (2.10) and (2.13).
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if the fluid is homogeneous and incompressible, the equation (2.15) is automatically

met.

Balance of Linear Momentum

The balance of linear momentum that originates from the second law of Newton

in classical mechanics when applied to each subset Pt = χκR
(PR, t) of the current

configuration takes the form

d

dt

∫

Pt

ρv dx =

∫

Pt

ρb dx+

∫

∂Pt

TT n dS , (2.17)

where T denotes the Cauchy stress that is related to the surface traction t through

t = TT n, and b denotes the specific body force. It then leads to the balance of

linear momentum in its local Eulerian form:

%v̇ = div TT + %b . (2.18)

Two comments are in order.

Firstly, considering the case when κt(B) = κR(B) for all t ≥ 0 and setting

Ω := κR(B), it is not difficult to conclude at least for incompressible fluids, that

(2.17) and (2.14) imply that

d

dt

∫

O

ρv dx +

∫

∂O

[

(ρv)(v · n) −TT n
]

dS =

∫

O

ρb dx , (2.19)

d

dt

∫

O

ρ dx+

∫

∂O

ρ(v · n)dS = 0, (2.20)

valid for all (fixed) subsets O of Ω.

When compared to (2.17), this formulation is more suitable for further consid-

eration in those problems where the velocity field v is taken as a primitive field

defined on Ω × 〈0,∞) (i.e., it is not defined through (2.5)).

To illustrate this convenience, we give a simple analogy from classical mechanics:

consider a motion of a mass-spring system described by the second order ordinary

differential equations for displacement of the mass from its equilibrium position

and compare it with a free fall of the mass captured by the first order ordinary

differential equations for the velocity.

Second, the derivation of (2.18) from (2.17) and similarly (2.15) from (2.14) re-

quires certain smoothness of particular terms. In analysis, the classical formulations

of the balance equations (2.18) and (2.15) are usually starting points for definition

of various kinds of solutions. Following Oseen [41] (see also [17], [18]), we want to
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emphasize that the notion of a weak solution (or suitable weak solution) is very

natural for the equations of continuum mechanics, since their weak formulation can

be directly obtained from the original formulations of the balance laws (2.14) and

(2.17) or better (2.19) and (2.20). This comment is equally applicable to the other

balance equations of continuum physics as well.

Balance of Angular Momentum

In the absence of internal couples, the balance of angular momentum implies

that the Cauchy stress is symmetric, i.e.,

T = TT . (2.21)

Balance of Energy

We shall merely record the local form of the balance of energy which is

%ε̇ = T · ∇v − div q + %r , (2.22)

where ε denotes the internal energy, q denotes the heat flux vector and r the specific

radiant heating.

Further Thermodynamic Considerations (The Second Law). Reduced dissipation

equation

To know how a body is constituted and to distinguish one body from another,

we need to know how bodies store energy. How, and how much of, this energy that

is stored in a body can be recovered from the body? How much of the working on

a body is converted to energy in thermal form (heat)? What is the nature of the

latent energy that is associated with the changes in phase that the body undergoes?

What is the nature of the latent energy (which is different in general from latent

heat)? By what different means does a body produce the entropy? These are but

few of the pieces of information that one needs to know in order to describe the

response of the body. Merely knowing this information is insufficient to describe

how the body will respond to external stimuli. A body’s response has to meet the

basic balance laws of mass, linear and angular momentum, energy and the second

law of thermodynamics.

Various forms for the second law of thermodynamics have been proposed and are

associated with the names of Kelvin, Plank, Claussius, Duhem, Carathéodory and
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others. Essentially, the second law states that the rate of entropy production has to

be non-negative†. A special form of the second law, the Claussius-Duhem inequality,

has been used, within the context of a continua, to obtain restrictions on allowable

constitutive relations (see Coleman and Noll [12]). This is enforced by allowing the

body to undergo arbitrary processes in which the second law is required to hold. The

problem with such an approach is that the constitutive structure that we ascribe

to a body is only meant to hold for a certain class of processes. The body might

behave quite differently outside this class of processes. For instance, while rubber

may behave like an elastic material in the sense that the stored energy depends

only on the deformation gradient and this energy can be completely recovered in

processes that are reasonably slow in some sense, the same rubber if deformed at

exceedingly high strain rates crystallizes and not only does the energy that is stored

not depend purely on the deformation gradient, all the energy that was supplied to

the body cannot be recovered. Thus, the models for rubber depend on the process

class one has in mind and this would not allow one to subject the body to arbitrary

processes. We thus find it more reasonable to assume the constitutive structures for

the rate of entropy production, based on physical grounds, that are automatically

non-negative.

Let us first introduce the second law of thermodynamics in the form

%θη̇ ≥ − div q +
q · (∇xθ)

θ
+ %r , (2.23)

where η denotes the specific entropy.

On introducing the specific Helmholtz potential ψ through

ψ := ε− θη ,

and using the balance of energy (2.22), we can express (2.23) as

T · L − %ψ̇ − %θ̇η −
q · (∇xθ)

θ
≥ 0 . (2.24)

The above inequality is usually referred to as the dissipation inequality. This in-

equality is commonly used in continuum mechanics to obtain restrictions on the

constitutive relations. A serious difficulty with regard to such an approach becomes

immediately apparent. No restrictions whatsoever can be placed on the radiant

† There is a disagreement as to whether this inequality ought to be enforced locally at every

point in the body, or only globally, even from the point of view of statistical thermodynamics.
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heating. More important is that the radiant heating is treated as a quantity that

adjusts itself in order to meet the balance of energy. But this is clearly unacceptable

as the radiant heating has to be a constitutive specification. How a body responds

to radiant heating is critical, especially in view of the fact that all the energy that

our world receives is in the form of electromagnetic radiation which is converted

to energy in its thermal form (see Rajagopal and Tao [52] for a discussion of these

issues). As we shall be primarily interested in the mechanical response of fluids, we

shall ignore the radiant heating altogether, but we should bear in mind the above

observation when we consider more general processes.

We shall define the specific rate of entropy production ξ through

ξ := T · L− %ψ̇ − %θ̇η −
q · (∇xθ)

θ
. (2.25)

We shall make constitutive assumptions for the rate of entropy production ξ and

require that (2.25) holds in all admissible processes (see Green and Nagdhi [24]).

Thus, the equation (2.25) will be used as a constraint that is to be met in all

admissible processes. We shall choose ξ such that it is non-negative and thus the

second law is automatically met.

We now come to a crucial step in our thermodynamic considerations. From

amongst a class of admissible non-negative rate of entropy productions, we choose

that which is maximal. This is asking a great deal more than the second law of

thermodynamics. The rationale for the same is the following. Let us consider an

isolated system. For such a system, it is well accepted that its entropy becomes a

maximum and the system would reach equilibrium. The assumption that the rate

of entropy production is a maximum ensures that the body attains its equilibrium

as quickly as possible. Thus, this assumption can be viewed as an assumption of

economy or an assumption of laziness, the system tries to get to the equilibrium

state as quickly as possible, i.e., in the most economic manner. It is important

to recognize that this is merely an assumption and not some deep principle of

physics. The efficacy of the assumption has to be borne out by its predictions and

to date the assumption has led to meaningful results in predicting the response of a

wide variety of materials; see results pertinent to viscoelasticity, classical plasticity,

twinning, solid to solid phase transition surveyed in the papers by Rajagopal and

Srinivasa [48] and [49], crystallization in polymers [53] and [54], or single crystal

supper alloys [44], etc.
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Isothermal flows at uniform temperature

Here, we shall restrict ourselves to flows that take place at constant temperature

for the whole period of interest at all points of the body. Consequently, the equations

governing such flows for an incompressible homogeneous fluid are

div v = 0 , %v̇ = div T + %b . (2.26)

Note also that (2.24) and (2.25) reduce to

T · D − %ψ̇ = ξ and ξ ≥ 0 , (2.27)

where the symmetry of T, see (2.21), is used.

In elasticity theory, it is common to use the stress-free configuration as the ref-

erence configuration κR(B), while in classical fluids the current configuration κt(B)

is used as the reference configuration. Let κp(t)(B) denote the configuration that the

body would attain when all the external stimuli that act on the body in κt(B) are

removed. We shall refer to this configuration as the preferred natural configuration.

The preferred configuration that the body attains depends on the process class that

is permissible for the body under consideration. Thus, the body may attain a par-

ticular natural configuration if it is only allowed to undergo isothermal processes

and another natural configuration if it is only subject to adiabatic processes, that is,

the natural configuration attained depends on how the external stimuli are removed

(for example instantaneously or slowly, etc.). We shall be interested in modeling

the response of fluids whose current configuration is the natural configuration, i.e.,

removal of the external stimuli leaves the fluid in the configuration that it is in.

The Navier-Stokes fluid is one such fluid.

(b) Models within a consistent thermodynamic framework

Following the work by Málek and Rajagopal [40] dealing with rate type fluids

whose material moduli are pressure, shear rate and density dependent and where

also the preferred natural configuration may differ from the current configuration,

we derive an hierarchy of incompressible fluid models. For simplicity, we deal with

homogeneous fluids where the density is uniformly constant. The hierarchy of in-

compressible fluid models generalizes the incompressible Navier-Stokes fluid in the

following sense: the viscosity may not only be a constant, but it can be a func-

tion that may depend on the symmetric part of the velocity gradient D specifically
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through its second invariant |D|2 := D ·D (we call this quantity the shear rate), or

the mean normal stress, i.e., the pressure p := − 1
3 trT, or it can depend on both of

them. We shall consider the most general case within this setting by assuming that

ξ = Ξ(p,D) = 2ν(p, |D|2) |D|2 . (2.28)

Clearly, if ν ≥ 0 then automatically ξ ≥ 0, ensuring that the second law is complied

with.

We assume that the specific Helmholtz potential ψ is of the form ψ = Ψ(%), i.e.,

it is a constant for a fluid where the density is constant at any point. Consequently,

ψ̇ vanishes in (2.27) and we obtain

T · D = Ξ . (2.29)

Following the same procedure as in [40], we maximize Ξ with respect to D that is

subject to the constraint (2.29) and the incompressibility constraint

trD = div v = 0 . (2.30)

As a necessary condition for the extremum we obtain the equation

(1 + λ1)Ξ,D − λ1T− λ0I = 0 , (2.31)

where λ0 and λ1 are the Lagrange multipliers due to the constraints (2.30) and

(2.29). We eliminate them as follows. Taking the scalar product of (2.31) with D,

and using (2.30) and (2.29) we obtain

1 + λ1

λ1
=

Ξ

Ξ,D ·D
. (2.32)

Note that

Ξ,D = 4
(

ν(p, |D|2) + ν,D(p, |D|2)|D|2
)

D . (2.33)

Consequently, tr Ξ,D = 0 by virtue of (2.30). Thus, taking the trace of (2.31) we

have

−
λ0

λ1
= −p with p = −

1

3
trT . (2.34)

Using (2.31)–(2.34), we finally find that (2.31) takes the form

T = −pI + 2 ν(p, |D|2)D . (2.35)

Mathematical issues related to the system (2.26) with the constitutive equation

(2.35) will be discussed in the third part of this treatise.
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Recall that taking constant ν in (2.35) we obtain the constitutive equation for

an incompressible Navier-Stokes fluid.

Models in the context of non-Newtonian fluids

No fluid model has been scrutinized and studied by mathematicians, physicists

and engineers as intensively as the Navier-Stokes fluid model. While this model

describes adequately a large class of flows (primarily laminar flows) of the most

ubiquitous fluids, air and water, it is inadequate in describing the laminar response

of a variety of polymeric liquids, geological fluids, food products, and biological

fluids, or for that matter the response of air and water undergoing turbulent flow.

The departure from the behavior exhibited by the Navier-Stokes fluid is referred

to as non-Newtonian behavior. Amongst the many points of departure, one that is

encountered commonly is the dependence of viscosity on the shear rate (or to be

more precise on the euclidean norm of the symmetric part of the velocity gradient),

stress relaxation, non-linear creep, the development of normal stress differences

in a simple shear flow and yield-like behavior (see Rajagopal [45] or Málek and

Rajagopal [39]).

The fluid given by (2.35) has the ability to shear thin, shear thicken and pressure

thicken. After adding the yield stress or activation criterion, the model could capture

phenomena connected with the development of discontinuous stresses. Thus the

model that we are interested in studying is a non-Newtonian fluid model. On the

other hand, the model (2.26) together with (2.35) cannot stress relax or creep in a

non-linear way, neither can it exhibit nonzero normal stress differences in a simple

shear flow.

(c) Models within the framework of implicit constitutive theories

In the previous subsection we provided thermodynamic basis for incompressible

models of the type (2.35). In this subsection, we show that (2.35) has a well-sounded

physical basis using a completely different approach, namely the implicit constitu-

tive theory, see [46].

The model (2.35) is markedly different from the models describing standard

Navier-Stokes fluids that represent explicit relationships between the stress and D;

the equation (2.35) is an implicit relationship between T and D of the form

f(T,D) = 0 . (2.36)



16 J. Málek

To see this, recall that we are interested in the flows of incompressible fluids, i.e.,

the flows under consideration are isochoric and fulfil the constraint (2.30). It follows

from (2.35) and (2.30) that

T =
1

3
(trT)I + ν̂(trT, |D|2)D , (2.37)

which can be expressed in the form (2.36). We note that, in general, neither can T

be expressed explicitly in terms of D nor vice-versa.

Let us start by considering fluids described by implicit constitutive relations of

the form (2.36). If we require the function f to be isotropic, then f has to satisfy

the restriction

f(QTQT ,QDQT ) = Qf(T,D)QT ∀Q ∈ Q,

where Q denotes the orthogonal group. It immediately implies (see Spencer [61])

that

α0I + α1T + α2D + α3T
2 + α4D

2 + α5(DT + TD) + α6(T
2D + DT2)

+α7(TD2 + D2T) + α8(T
2D2 + D2T2) = 0 ,

where αi, i = 0, . . . 8 depend on the invariants

trT, trD, trT2, trD2, trT3, trD3, tr(TD), tr(T2D), tr(D2T), tr(T2D2).

We note that if

α0 = −
1

3
trT,

α1 = 1,

and

α2 = −2ν(−
1

3
trT, |D|2) (ν > 0),

we obtain the model

T = (
1

3
trT)I + 2ν(−

1

3
trT, |D|2)D. (2.38)

On defining

p := −
1

3
trT,
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equation (2.38) reduces to

T = −pI + 2ν(p, |D|2)D, (2.39)

the model whose mathematical properties we shall discuss in the next chapter.

We note that the model (2.39) automatically meets the constraint (2.30). That

is, the model is only capable of undergoing isochoric motions; it describes an incom-

pressible fluid. We obtained the model as a consequence of our constitutive choice

for α0 . . . α8, and not by imposing (2.30) as a constraint and thereby obtaining p

as a Langrange multiplier that enforces the constraint.

It is important to note that the classical approach that is employed in most

continuum mechanics textbooks to enforce constraints by requiring that they do

no work, and splitting the stress into a constraint response stress TC and an extra

constitutively determinate stress TE (see Truesdell [65]), i.e.,

T = TE + TC

will not lead to the material moduli that appear in TE to depend on the Lagrange

multiplier, in our case the mean normal stress p (see Rajagopal and Srinivasa [50]).

However, models such as (2.39) appear naturally within the context of the implicit

relation of the form (2.36).

(d) Works supporting the viscosity-pressure relationship

Stokes, in his celebrated paper on the motion of fluids and the equilibrium of

solids [62], clearly recognized that the viscosity of fluids such as water could depend

on the mean normal stress, as evidenced by his comments: ”. . . If we suppose ν to

be independent of the pressure . . . ” and ”Let us now consider in what cases it is

allowable to suppose ν to be independent of the pressure”. That is, according to

Stokes, one cannot suppose ν to be independent of pressure in all processes that the

fluid undergoes, and in this he was exactly on the mark over a century and half ago.

Elastohydrodynamics is an example wherein one can sensibly approximate the fluid

as being incompressible with the viscosity depending on the pressure. It is however

worth emphasizing that there is a large class of flows, not those merely restricted

to flows in pipes and channels wherein the viscosity can be assumed to be constant,

so much so that this is the assumption that is usually made in fluid mechanics. The

classical incompressible Navier-Stokes model bears testimony to the same.
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A considerable amount of experimental work has been carried out concerning

the pressure dependence of the material moduli, and the pertinent literature prior

to 1930 can be found in the authoritative book by Bridgman [10]. Andrade [3]

proposed the following relationship between the viscosity ν, the pressure p, the

density % and the temperature θ:

ν(p, %, θ) = A%
1
2 exp

(
B

θ
(p+D%2)

)

, (2.40)

where A, B and D are constants. We note that Andrade [3] did not consider the

possibility that the viscosity of the fluids which he experimented could depend upon

the shear rate. We cannot be sure that the fluids that he tested did not posses a

viscosity depending on the shear rate; the experiments that he carried out are

inadequate to speak to this matter.

As early as 1893 Barus [6] suggested the following relationship for the viscosity

for liquids:

ν(p) = ν0 exp(αp) , α > 0 . (2.41)

Such an expression has been used for several decades in elastohydrodynamics where

the fluid is subject to a wide range of pressures and consequently a significant change

in the viscosity occurs(see Szeri [63]). There are several recent experimental studies

that indicate that the pressure gets to be so large that the fluid is very close to

undergoing glass transition and at such high pressures the Barus equation (2.41)

becomes inappropriate (see Bair and Kottke [4]). In fact the viscosity varies even

more drastically than exponential dependence (see Figure in Bair and Kottke [4]).

Other formulae for the variation of the viscosity with pressure, which better fit

experimental results, can be found in the literature but they invariably involve an

exponential relationship of sorts (see Cutler et al. [13], Griest et al. [25], Johnson

and Cameron [29], Johnson and Greenwood [30], Johnson and Tevaarwerk [31], Bair

and Winer [5], Roelands [57], Paluch et al. [42], Irving and Barlow [28], Bendler

et al. [8]). The precise relationship between the viscosity and the pressure is not

of consequence, what is important is the fact that the viscosity depends on the

pressure.

The density changes in liquids such as water the pressure correlates well with

the empirical expression (see Dowson and Higginson [16])

% = %0

[

1 +
0.6p

1 + 1.4p

]

, (2.42)
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where %0 is the density in the liquid as the pressure tends to zero.

When liquids such as water and many organic fluids† are subject to a wide range

of pressures, say from 2 GPa to 3 GPa, it is found that while the density of the

fluid varies (say 3 to 10%) slightly, the viscosity of the fluid can change by as much

as a factor of 108! (See recent experiments of Bair and Kottke [4].) This suggests

that it would be reasonable to model such fluids as incompressible fluids with the

viscosity depending upon the pressure.

We would be remiss if we did not emphasize that liquids are compressible and

that the scatter amongst the compressibility of liquids can be quite large. As Bridg-

man points out, due to a certain pressure difference, while Glycerine can have

a change of volume of approximately 13.5%, mercury changes by only 4%. The

marginal compressibility, that is the change of density due to a change in pressure

decreases as the pressures increase, as can be inferred from (2.42).

Despite recognizing the importance of the dependence of viscosity on pressure,

the elastohydrodynamicists have failed to systematically incorporate the pressure

dependence until recently. The classical Reynold’s approximation for lubrication

which forms one of the cornerstones of fluid mechanics is derived under the as-

sumption that the viscosity is constant. This approximation has been subsequently

generalized to the field of elastohydrodynamics. While the elastohydrodynamicist

recognizes that the viscosity depends on the pressure, he merely substitutes this

dependence after the approximation has been derived rather than incorporating the

dependence of the viscosity, à priori, and subsequently deriving the approximations.

Rajagopal and Szeri [51] have recently derived a consistent set of approximate equa-

tions that are the appropriate generalization of the celebrated Reynold’s lubrication

approximation.

3. Mathematical analysis of the models

There is a significant need to understand the mathematical properties of the solu-

tions to the equations governing the flows of incompressible fluids with the viscosity

depending on pressure and shear rate, both due to their use in various areas of engi-

neering sciences, and due to difficulties that occur during numerical simulations of

the relevant systems of partial differential equations (PDEs). This system of PDEs

† The variation of the viscosity of water is somewhat different from those of many organic

liquids in that in certain range of pressure it exhibits anomalous response.
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is of independent interest on its own in virtue of its structural simplicity on one

hand and the very complicated relation between the velocity and the (nonlocal)

pressure on the other hand that does not permit one to eliminate the pressure from

the analysis of the problem by projecting the equations to the set of divergenceless

functions, as it is frequently done in the analysis of NSEs and similar systems.

(a) Systems of PDEs, boundary conditions and on a datum for the pressure

We consider the case when flows take place inside a fixed container. It means

that κt(B) occupies for all t ≥ 0 the same open bounded set Ω ⊆ R
d, i.e. κt(B) = Ω

for all t ≥ 0. We consider for simplicity the case when the boundary ∂Ω is smooth

as specified later.

On substituting (2.35) and %(x, t) = %̄ (where %̄ is a positive number) into the

balance of linear momentum (2.26)2, we obtain the system of governing equations

−∇p+ div
[
ν(p, |D(v)|2)D(v)

]
+ %̄b = %̄

dv

dt

that holds in (0, T ) × Ω. To the above set of equations we add the conservation of

mass that reduces to the divergenceless constraint (2.26)1.

It is convenient to divide this form of the balance of linear momentum by the

constant positive value of the density %̄. Then, relabeling ν
%̄ and p

%̄ by ν and p,

respectively, we can rewrite the above system as

div v = 0, S = ν(p, |D(v)|2)D(v)

v,t + div(v ⊗ v) − div S = −∇p+ b






in (0, T ) × Ω, (3.1)

If flows are steady the system reduces to the form

div v = 0, S = ν(p, |D(v)|2)D(v)

div(v ⊗ v) − div S = −∇p+ b






in Ω . (3.2)

Naturally, if v0 is a given divergenceless initial velocity field, the relevant initial

condition for the system (3.1) takes the form

v(0, x) = v0(x) at almost all x ∈ Ω . (3.3)
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Boundary conditions

Here we shall restrict ourselves to a discussion of internal flows which meet†

v · n = 0. (3.4)

This condition is considered on ∂Ω if we deal with (3.2), and on [0, T ] × ∂Ω if the

evolutionary model (3.1) is studied. Regarding the tangential components of the

velocity, we shall consider the no-slip boundary condition where

vτ = v − (v · n)n = 0, (3.5)

or we take slip into account, according to what is usually referred to as Navier’s

slip, i.e.,

(Sn)τ + αvτ = 0. (3.6)

We shall also present results corresponding to solutions of (3.1) that are spatially

periodic and thus we shall assume that

(v, p) : (0, T ) × R
d → R

d × R are L-periodic for each spatial variable

and that

∫

Ω

v(x, t) dx = 0, Ω := (0, L)d.
(3.7)

On a datum for the pressure

Unlike the classical Navier-Stokes equations wherein one only encounters the

gradient of the pressure, in the problem under consideration the actual value of the

pressure appears as the viscosity depends on the pressure. Within the context of the

mathematical framework that we are using, it does not make sense to merely pre-

scribe p at a specific point. Thus, in order to fix the pressure, we use for stationary

problems the condition
1

|Ω|

∫

Ω

p dx = p0, (3.8)

where p0 ∈ R is given and |Ω| denotes the volume of Ω, while for the evolutionary

problems we incorporate the condition

1

|Ω|

∫

Ω

p(x, t) dx = Q(t) for all t ∈ (0, T ), (3.9)

where Q : (0, T ) → R is given.

† Here, n = n(x) denotes the outer normal to the boundary ∂Ω at the point x ∈ ∂Ω.
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When the viscosity does not depend on the pressure, the constant that fixes the

pressure is irrelevant, such is not the case in the current situation as the value of

the viscosity depends on the value of the pressure. Thus, the flow characteristics

corresponding to a flow in pipe due to a pressure of 100 psi at the inlet and 99 psi

at the outlet would be significantly different than the flow due to an inlet pressure

of 105 + 1 psi and on outlet pressure 105 psi, although the pressure difference in

the two cases is exactly the same. The effect of the pressure on the viscosity in

the latter case is however significantly different than in the former. While, from

physical considerations it might be best to fix the value of the pressure by knowing

its value at one point, as we are interested in dealing with integrable functions fixing

it on a set of measure zero is not meaningful. In view of this we fix the pressure by

requiring it satisfies a certain mean value as defined through equation (3.8).

An alternative possibility of fixing the pressure is to prescribe the normal trac-

tion on a relevant portion of the boundary with non-zero area measure. The math-

ematical investigation of the systems of PDEs completed by boundary conditions

of this type is a subject of current research.

(b) On analysis of models when ν = ν(p)

Up to now there have been few studies dealing with the mathematical analysis

of incompressible fluid models wherein the viscosity is pressure-dependent. We first

provide a survey of observations related to (3.2) or (3.1) where however ν is a

function of the pressure only, i.e.,

ν = ν(p). (3.10)

Renardy [55] seems to be the first who dealt with theoretical analysis of (3.2)

and (3.1). Firstly, he asked the question whether a given velocity field uniquely

determines the pressure and he showed that this happens if

ν∗∞ := lim
p→+∞

ν′(p) <∞, (3.11)

i.e., the viscosity grows at most linearly with the pressure, and if

eigenvalues of D(v) are strictly less then
1

ν∗∞
. (3.12)

The assumption (3.12) implies that the flow has to have sufficiently small velocity

gradients. Let us remark that experimental results unequivocally indicate that

ν′(p) > 0 for all p ∈ R. (3.13)
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In fact, if the pressure is sufficiently high glass transition takes place. The condition

(3.11) is evidently not fulfilled if the viscosity depends on the pressure exponentially,

as is the case in (2.40) or (2.41). One can however argue that the viscosity can be

truncated at some higher value of p0 � 1. Thus, for example, ν can be approximated

by

ν∗(p) =







ν(p) if p ∈ (−∞, p0],

ν(p0) if p > p0,
(3.14)

or it can be extended smoothly at p0, but with sublinear growth so that (3.11)

holds.

A much more severe restriction seems to be the condition (3.12) since not all

velocity field are admissible. Working with higher order Sobolev spaces, and assum-

ing the restriction (3.11) and (3.12), Renardy proves the existence and uniqueness

of the solution to (3.1). Since the initial data also have to fulfill (3.12), this is a

small-data result. Also, since the energy estimates (b ≡ 0 for simplicity)

1

2
‖v(t)‖2

2 +

∫ t

0

∫

Ω

ν(p)|D(v)|2 dx ds =
1

2
‖v0‖

2
2 (for allt > 0) (3.15)

are available here, it seems more natural to construct weak solution in the spaces

determined by (3.15). Such a result is however not in place to our knowledge.

Gazzola [22] treating the evolutionary problem (3.1), and Gazzola and Secchi

[23] when dealing with the stationary problem (3.2), established results without

assuming (3.12). Nevertheless, their results are in some sense elementary even if

the treatment of the pressure requires an approach totally different from that used

usually in Navier-Stokes theory where one frequently eliminates the pressure and

works with spaces of functions that are divergenceless. The results established in

[22] and [23] are immediate consequences of the fact that only small initial con-

ditions and almost potential external body forces (b ∼ ∇g) are considered; one

can immediately observe that b = ∇g and v0 ≡ 0 leads to the energy identity

(
∫

bv =
∫
g div v = 0)

1

2
‖v(t)‖2

2 +

∫ t

0

∫

Ω

ν(p)|D(v)|2 dx ds = 0,

which implies that v ≡ 0, p = g is the unique trivial solution of the problem. One

obtains a similar conclusion for the stationary problem. Thus, if b is close to ∇g

and (v0 is small for the time-dependent case) it is not ”surprising” that in the



24 J. Málek

case of (3.1), Gazzola obtains as an addition to all these restrictions, the existence

of solution only on a certain interval [0, T0], T0 determined by a suitable (small)

norm of v0. Málek, Nečas and Rajagopal [D2] observed that the feature ”to a given

velocity field there is a uniquely defined pressure” can be achieved if one ”allows”

the viscosity to depend also on the shear rate in a suitable manner. The structure

of the viscosities and the results established for such models till recently will be

discussed next.

(c) On analysis of models when ν = ν(p, |D(v)|2)

It has been observed in Málek, Nečas and Rajagopal [D2] that the dependence

of ν on |D(v)|2 may help, particularly if such a dependence is sublinear. To see

this, let us assume that there are p1, p2 for a given v that fulfill (3.1). Then, by

taking the divergence of (3.1) for (v, p1) and (v, p2) we come to the relation for the

difference of the form

p2 − p1 = (−4)−1 div div
(
[ν(p1, |D(v)|2) − ν(p2, |D(v)|2)]D(v)

)

= (−4)−1 div div

(
∂ν(p1 + δ(p2 − p1), |D(v)|2)

∂p
D(v)(p1 − p2)

)

,

which on simplifying leads to

‖p1 − p2‖q ≤ max
Q,D(v)

∣
∣
∣
∣

∂ν

∂p
(Q, |D(v)|2)D(v)

∣
∣
∣
∣
‖p1 − p2‖q .

Thus, if

max
Q,D

∣
∣
∣
∣

∂ν

∂p
(Q, |D|2)D

∣
∣
∣
∣
< 1,

we obtain p1 = p2.

This observation motivates the following assumptions. We assume that the vis-

cosity ν is a C1-mapping of R×R
+
0 into R+ satisfying for some fixed (but arbitrary)

r ∈ [1, 2] and all D ∈ R
d×d
sym , B ∈ R

d×d
sym and p ∈ R the following inequalities

C1(1 + |D|2)
r−2
2 |B|2 ≤

∂ν(p, |D|2)Dij

∂Dkl
BijBkl ≤ C2(1 + |D|2)

r−2
2 |B|2, (3.16)

∣
∣
∣
∣

∂ν(p, |D|2)

∂p

∣
∣
∣
∣
|D| ≤ γ0(1 + |D|2)

r−2
4 , (3.17)

where γ0 is a positive constant whose value will be restricted in the formulations of

the particular results.

Since r = 2 is included in the range of parameters, we see that (3.16) (and

naturally also (3.17)) includes the Navier-Stokes model. Also, if ν is independent
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of p then (3.17) is irrelevant and (3.16) is fulfilled by generalized power-law-like

fluids. We refer to [D6], [D9]–[D11], and Málek and Rajagopal [39] for a survey of

mathematical results related to these special cases. In the next subsection we restrict

ourselves to this class of fluids, it means we consider ν being purely a function of

|D|2 satisfying (3.16), and we survey techniques developed to obtain compactness of

the velocity gradients. These techniques, three of them developed in the last fifteen

years, serve or will serve as important tools in the proofs of the results stated below

for incompressible fluids with pressure and shear-rate dependent viscosities.

Note that the assumption (3.17) do not permit us to consider any model where

the viscosity depends only on the pressure.

The following forms of the viscosities fulfil the assumptions (3.16) and (3.17).

Example 1. Consider for r ∈ (1, 2]

νi(p, |D|2) =
(
1 + γi(p) + |D|2

) r−2
2 , i = 1, 2, (3.18)

where γi(p) have the form (s ≥ 0)

γ1(p) = (1 + α2p2)−s/2,

γ2(p) =







exp(−αsp) if p > 0

1 if p ≤ 0







⇒ 0 ≤ γi(p) ≤ 1, (i = 1, 2). (3.19)

Then (3.16) holds with C1 = 2
r−2
2 (r − 1) and C2 = A

r−2
2 and (3.17) holds with

γ0 = αs 2−r
2 (see [D2] for details).

Example 2. Within the class of the viscosities of the type

ν(p, |D|2) = γp(p)νD(|D|2) + ν∞ , with ν∞ > 0

consider

ν(p, |D|2) :=
γ3(p)

√

|D|2 + ε
+ ν∞ (3.20)

such that for some γ∞, γ0 > 0

0 ≤ γ3(p) ≤ γ∞ and |γ′3(p)| ≤ γ0. (3.21)

Then (3.20) satisfies the assumptions (3.16)-(3.17) with parameters γ0 and r = 2.

Setting ε = ν∞ = 0 and γ3(p) = α(p) in (3.20), one obtains a model introduced by

Schaeffer [58] in order to describe certain flows of granual materials.
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In order to formulate clearly the results that have been recently established

for fluids with pressure and shear rate dependent viscosity, we first introduce the

notation for particular problems and for suitable function spaces. We set

(Psteady)dir

(Psteady)nav

(Pevol)per

(Pevol)dir

(Pevol)nav







for the problem consisting of







(3.2), (3.4), (3.8) and (3.5),

(3.2), (3.4), (3.8) and (3.6),

(3.1), (3.9) and (3.3),

(3.1), (3.4), (3.9), (3.3) and (3.5),

(3.1), (3.4), (3.9), (3.3) and (3.6).

We write that Ω ∈ C0,1 if Ω ⊆ R
d, d ≥ 2 is a bounded open connected set with

Lipschitz boundary ∂Ω. If in addition the boundary ∂Ω is locally C1,1 we write

Ω ∈ C1,1.

Let r ∈ [1,∞]. The Lebesgue spaces Lr(Ω) equipped with the norm ‖ · ‖r and

the Sobolev spaces W 1,r(Ω) with the norm ‖·‖1,r are defined in the standard way. If

X is a Banach space then Xd = X ×X × . . .×X
︸ ︷︷ ︸

d−times

. The trace of a Sobolev function

u is denoted through tru, if v ∈ (W 1,r(Ω))d then trv := (tr v1, . . . , tr vd). For our

purpose we introduce the subspaces of vector-valued Sobolev functions which have

zero normal part on the boundary. Let 1 ≤ q ≤ ∞. We define

W
1,q
0 := {v ∈ (C∞(Ω))d; supp v ⊂ Ω}

‖·‖1,q

,

W
1,q
0,div :=

{

v ∈W
1,q
0 ; div v = 0

}

,

W 1,q
n :=

{
v ∈ (C∞(Ω))d ∩ (C(Ω))d; trv · n = 0 on ∂Ω

}‖·‖1,q

,

W
1,q
n,div :=

{
v ∈W 1,q

n
; div v = 0

}
,

Lq
n

:=
{

v ∈W
1,q
n,div

}‖·‖q

.

We also introduce the notation for the dual spaces:

W−1,q′

:=
(

W
1,q
0

)∗

,W
−1,q′

div :=
(

W
1,q
0,div

)∗

,

W−1,q′

n
:=

(
W 1,q

n

)∗
and W−1,q′

n,div :=
(

W
1,q
n,div

)∗

.

All the spaces introduced above are Banach spaces. Moreover, if 1 < q < ∞ they

are also reflexive and separable.

The first theorem discusses the results dealing with stationary problems (Psteady)dir

and (Psteady)nav.
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Theorem 1. Let Ω ∈ C0,1 and p0 ∈ R be given. Let b ∈ W−1,r′

n
for the problem

(Psteady)nav or b ∈ W
−1,r′

0 for the problem (Psteady)dir. Assume that ν satisfies

(3.16)-(3.17) with the parameters r and γ0 such that

2d

d+ 1
< r ≤ 2 and 0 ≤ γ0 <

C1

2C∗(Ω, 2)(C1 + C2)
, (3.22)

where C∗(Ω, 2) is specified below. Then there exists a weak solution to the problem

(Psteady)dir and (Psteady)nav such that

v ∈







W
1,r
0,div

W
1,r
n,div

for (Psteady)dir

for (Psteady)nav

p ∈







Lr′

(Ω)

L
dr

2(d−r) (Ω)

for r ∈

(
3d

d+ 2
, 2

]

,

for r ∈

(
2d

d+ 1
,

3d

d+ 2

]

,

and the weak formulation

− (v ⊗ v,∇ϕ) +
(
ν(p, |D(v)|2)D(v),D(ϕ)

)
+ α

∫

∂Ω

v ·ϕ dS = (p, divϕ) + 〈b,ϕ〉

(3.23)

is valid for all ϕ having the property†

ϕ ∈







W
1,q
0,div

W
1,q
n,div

for (Psteady)dir

for (Psteady)nav

where

q = max

{

r,
dr

(d+ 2)r − 2d

}

=







r if r ∈

(
3d

d+ 2
, 2

]

,

dr

(d+ 2)r − 2d
if r ∈

(
2d

d+ 1
,

3d

d+ 2

]

.

The constant C∗(Ω, q) has relevance to the following problem: for a given g ∈

Lq(Ω) with zero mean value, find z by solving

div z = g in Ω, z = 0 on ∂Ω. (3.24)

It is known (see Bogovskii [9] or Amrouche and Girault [2]) that there is a bounded

linear operator B that maps Lq(Ω) into W 1,q
0 (Ω), for every q ∈ (1,∞), such that

z := B(g) solves (3.24). Particularly, we have

‖z‖1,q = ‖B(g)‖1,q ≤ C∗(Ω, q)‖g‖q.

† Note that the boundary integral α
∫

∂Ω
v · ϕ dS = 0 for ϕ ∈ W

1,q
0

.
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Comments concerning the proof: For r ∈
(

3d
d+2 , 2

]

the result for (Psteady)dir is es-

tablished in Franta et al. [D4]. The results for r ∈
(

2d
d+1 ,

3d
d+2

]

and for (Psteady)nav

can be deduced in a straightforward way from Buĺıček et al. [D5] where the au-

thors treat a more complicated evolutionary model (Pevol)nav. While it is not at all

clear how to extend the result to (Pevol)dir, for steady flows the extension from

(Psteady)nav to (Psteady)dir requires only modifications in definitions of relevant

function spaces (see also Comments concerning the proof of Theorem 3). Partial

regularity of weak solution to (Psteady)dir for d = 2, 3 is established in [36], see

the annoucement in [35]. This study initiated the analysis of a generalized Stokes

system whereas the generalization consists in replacing the Laplace operator by a

general elliptic operator of second order and by replacing the gradient of the pres-

sure by a general first order operator. Such generalized Stokes system are studied

by Huy and Stará in [27]. See also the recent thesis [26] by Huy.

The second theorem deals with the problem (Pevol)per. For this purpose we

denote Lr
per and W 1,r

per the standard Lebesgue and Sobolev spaces of L-periodic

functions. The Sobolev spaces contain only functions with zero mean value over the

periodic cell Ω := (0, L)d.

Theorem 2. Let d = 2, 3. Let Ω ∈ C0,1, b ∈ Lr′

(0, T ;W−1,r′

per ), v0 ∈ L2
per,div and

Q ∈ L2(0, T ) be given. Assume that ν satisfies (3.16)-(3.17) with the parameters r

and γ0 such that

r ∈







(
4

3
, 2

]

if d = 2

(
9

5
, 2

]

if d = 3

and γ0 = min

{
1

2
,
C1

4C2

}

.

Then there exists a weak solution to the problem (Pevol)per such that

v ∈ C(0, T ;L2
weak) ∩ L

r(0, T ;W 1,r
per,div),

v,t ∈







Lr(0, T ;W−1,r
per )

L
5r
6 (0, T ;W

−1,5r
6

per )

if d = 2,

if d = 3,
,

p ∈







Lr(0, T ;Lr(Ω))

L
5r
6 (0, T ;L

5r
6 (Ω))

if d = 2,

if d = 3,

and the weak formulation

〈v,t,ϕ〉 − (v ⊗ v,∇ϕ) +
(
ν(p, |D(v)|2)D(v),D(ϕ)

)
= (p, divϕ) + 〈b,ϕ〉 (3.25)
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is valid for almost all t ∈ (0, T ) and all ϕ having the property

ϕ ∈







Lr′

(0, T ;W 1,r′

per )

L
5r

5r−6 (0, T ;W
1, 5r

5r−6
per )

if d = 2,

if d = 3.

Comments concerning the proof: The result in three dimensions is established in

[D2], and the two-dimensional case is treated in [D3].

The final theorem deals with the problem (Pevol)nav.

Theorem 3. Let d = 2, 3. Let Ω ∈ C1,1, b ∈ Lr′

(0, T ;W−1,r′

n
), v0 ∈ L2

n,div and

Q ∈ L2(0, T ) be given. Assume that ν satisfies (3.16)-(3.17) with the parameters r

and γ0 such that

r ∈







(
3

2
, 2

)

if d = 2

(
8

5
, 2

)

if d = 3

and γ0 <
1

C#(Ω, 2)

C1

C1 + C2
.

where C#(Ω, 2) appears in (3.27) below. Then there exists a weak solution to the

problem (Pevol)nav such that

v ∈ C(0, T ;L2
weak) ∩ L

r(0, T ;W 1,r
n,div),

v,t ∈

(

L
r(d+2)

r(d+2)−2d (0, T ;W
1, r(d+2)

r(d+2)−2d

n )

)∗

,

p ∈







Lr(0, T ;Lr(Ω))

L
5r
6 (0, T ;L

5r
6 (Ω))

if d = 2,

if d = 3,

and the weak formulation

〈v,t,ϕ〉 − (v ⊗ v,∇ϕ) +
(
ν(p, |D(v)|2)D(v),D(ϕ)

)

+ α

∫

∂Ω

v ·ϕ dS = (p, divϕ) + 〈b,ϕ〉
(3.26)

is valid for almost all t ∈ (0, T ) and all ϕ having the property

ϕ ∈







Lr′

(0, T ;W 1,r′

n
)

L
5r

5r−6 (0, T ;W
1, 5r

5r−6
n )

if d = 2,

if d = 3.

Moreover, if instead of (3.17) one assumes the condition (8) from [D5] then the

results holds also for the case r = 2. If in addition d = 2 then the weak solution is

unique.
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The constant C#(Ω, q) occurs in the solvability of the following problem. For

q ∈ (1,∞) and Ω ∈ C1,1 and an arbitrary ϕ ∈ Lq(Ω) with zero mean value to find

g ∈W 2,q(Ω) solving

4g = ϕ in Ω, ∇g · n = 0 on ∂Ω,

∫

Ω

g(x) dx = 0

satisfying

‖g‖2,q ≤ C#(Ω, q)‖ϕ‖q . (3.27)

Comments: Even for steady flows, there is a remarkable difference in how the pres-

sure is introduced. While for problems where the vicosity is independent of pressure,

the pressure can be easily identified using for example de Rham’s theorem, the same

method cannot be used for problems with pressure dependent viscosity since one

needs to have knowledge of the nature of the pressure à priori. Our approach uses

the quasi-compressible approximations.

There is also another crucial difference in introducing the pressure for the evo-

lutionary NSEs and time-dependent models with non-constant viscosity. For the

NSEs, we can identify the model with an evolutionary Stokes system, where the

convective term is included in the right-hand side, and apply results concerning the

Lp-estimates available for such systems (see [60]). For the models where ν is not

constant (and may depend on p or |D(v)|2) an analogous theory for generalized

Stokes system is not available thus far. In the article [D5] (see Theorem 3), Buĺıček

et al. show that the problem with Navier’s slip boundary conditions, contrary to

that with no-slip boundary conditions, does not suffer such a deficiency and it is

possible to introduce the pressure globally.

Theorem 3 establishes the first result concerning long-time and large-data ex-

istence of weak solutions to any incompressible fluid model where the viscosity

depends on the pressure and where flows take place in a bounded container. Theo-

rem 3 covers several interesting results even for fluids whose viscosity is independent

of the pressure (as are for example Navier-Stokes or power-law fluids). We refer to

[D5] for details.

(d) Compactness criteria for the velocity gradient

In the analysis of problems (Psteady)nav, (Psteady)dir, (Pevol)per, (Pevol)dir or

(Pevol)nav, an important role played the knowledge of various methods to obtain

almost everywhere convergence for the velocity gradient. These methods were devel-
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oped when analyzing the systems of PDEs describing flows of incompressible fluids

with the viscosity depending purely on the shear rate. The aim of this subsection

is to provide a survey of these techniques. For this purpose we restrict ourselves to

the case when

T = −pI + ν(|D|2)D , (3.28)

assuming the validity of the assumption (3.16). In fact, just for brevity we consider

a typical example of (3.28), namely, the power-law fluids given by

T = −pI + ν0|D|r−2D , with r > 1 . (3.29)

A key issue in the proof of the existence of a weak solution to any (system of)

nonlinear PDEs is the stability of weak solutions with respect to weak convergence.

This property, called weak stability of the system of PDEs, written symbolically

as PDE(u) = b, can be made more precise in the following way. Assume that a

sequence {uε} enjoys two properties: (i) {uε} satisfies uniformly apriori estimates

in a (reflexive Banach) function space Y that are available for a given problem, i.e.

supε ‖u
ε‖Y ≤ K, and (ii) {uε} solves PDE(uε) = bε with the right-hand side bε

converging strongly to b in a suitable (dual) norm. It follows from (i) that modulo a

subsequence uε converges weakly to u in Y . It is well known that weakly converging

sequences do not commute with nonlinearities in general. Taking the limit ε → 0

in PDE(uε) = bε, we say that the problem is weakly stable if one can show that u

solves the original problem PDE(u) = b.

In order to investigate the weak stability of our problems (Psteady)dir, (Pevol)per,

etc., we first summarize the basic energy estimates and their consequences. For

simplicity, we restrict ourselves to the most interesting three-dimensional flows,

i.e., d = 3.

The balance of mechanical energy implies the following estimates for suitable

approximations (vε, pε) of (3.1)

‖vε(t)‖2
2 +

∫ T

0

‖∇vε‖r
r ds+

∫ T

0

‖vε‖
5r
3
5r
3

ds ≤ K . (3.30)

From here we have the following bound on ∂tv
ε (see (5.2.25) in Málek et al. [38],

p.207)

‖∂tv
ε‖Lr′ (0,T ;(W s,2

div
)∗) ≤ K , s >

5

2
, r′ =

r

r − 1
. (3.31)
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This immediately implies (at least for a subsequence) that

∇vε → ∇v weakly in Lr(0, T ;Lr(Ω)) ,

vε
t → vt weakly in Lr′

(0, T ; (W s,2
div)∗) ,

(3.32)

and if r > 6
5 the Aubin-Lions compactness lemma gives

vε → v strongly in Ls(0, T ;L2(Ω)) (∀s ∈ 〈1,∞)) . (3.33)

It then easily follows from (3.32) and (3.33) that if r > 6
5 one can pass to the limit

both in the convective term and in the time derivative term.

The key point is the passage to the limit in the nonlinear elliptic term involving

S(D(v)) = 2ν0|D(v)|r−2D(v). Since |S(D)| ≤ C |D|r−1, this will follow from

almost everywhere convergence of ∇vk to ∇v in QT .
(
{vk} ⊂ {vε}

)
(3.34)

We present four different ways how to obtain (3.34).

1. Higher regularity method. It is based on standard difference quotient tech-

nique, which leads for spatially periodic or Cauchy problem (see Málek et al. [38]

and Pokorný [43]) to the inequality

d

dt
‖∇vε‖2

2+J(vε) ≤ C‖∇vε‖2λ
2 ‖∇vε‖r

r with λ =
2(3− r)

3r − 5

and J(vε) =

∫

Ω

|D(vε)|r−2 |D(∇vε)|2 dx dt .

(3.35)

If λ ≤ 1, which happens if r ≥ 11
5 , then we obtain higher regularity from which

(3.34) follows using the compact imbedding. See Málek et al. [38] for more details;

note however that J(vε) is not degenerate therein.

If λ > 1 (it means that r < 11
5 ), the inequality (3.35) does not, in general,

improve the smoothness of the solution. However, it follows from (3.35) and (3.30)

that
∫ T

0

J(vε)

(1 + ‖∇vε‖2
2)

λ
ds ≤ K . (3.36)

The further arguments differ in dependence whether r > 2 or r < 2. For simplicity,

let us consider the latter. Then (3.36) together with (3.30) implies that if (2 ≥)r > 9
5

we have
∫ T

0

‖∇(2)vε‖2β
r dt ≤ K with β ∈ (0, 1

3 ] . (3.37)
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All these estimates together with an interpolation technique for certain σ > 0 and

r0 ∈ (1, r) lead then to the following

∫ T

0

‖vε‖r
1,r dt ≤ K

∫ T

0

‖vε‖2β
2,r dt ≤ K







=⇒

∫ T

0

‖vε‖r0
1+σ,r dt ≤ K . (3.38)

Having (3.38) and (3.31) at hand, we apply the Aubin-Lions compactness lemma

again and conclude the strong convergence of ∇vε to ∇v in Lr0(0, T ;W 1,r), which

implies (3.34).

This method has been extended to the no-slip boundary condition (see Málek,

Nečas and Růžička [D9] for details), which seems to be a nontrivial task as we have

to apply the regularity techniques up to the boundary and in addition to overcome

the presence of the nonlocal quantity, the pressure. In this case, the presence of the

boundary leads to results that are worse than in the spatially-periodic case. On the

other hand, it follows from Málek, Nečas and Růžička [D9] that there is a weak

solution to 3d NSEs with the no-slip boundary satisfying

∫ T

0

‖∇2v‖
2/3
2 dt ≤ C ,

the result that has been known before only for the spatially periodic case, see Foias,

Guillopé and Temam [19].

The following three methods have a common goal: to show that for some θ ∈ (0, 1),

say θ = 1
2 , and for an arbitrarily chosen η > 0 there is {vn} ⊂ {vε} such that

lim sup
n→∞

∫ T

0

∫

Ω

[

{S(D(vn)) − S(D(v))} : D(vn − v)
]θ

dx dt ≤ η . (3.39)

Since the corresponding nonlinear operator is strictly monotone, once we obtain

(3.39), the almost everywhere convergence (3.34) (at least for a suitable chosen

subsequence) follows.

2. Standard monotone operator method. To achieve (3.39) it seems natural

to multiply the approximate problem by vn − v. This is possible for all type of

considered boundary conditions, as shown by O. A. Ladyzhenskaya for the first

time† (see [32] for example), but it restricts ourselves to the range of r,

r ≥
11

5
, (3.40)

† See also Lions [34].
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due to the required finiteness of the integral

∫

QT

vn
k ∂xk

vn · (vn − v) dx dt . (3.41)

Once the integrability is assured, the term in (3.41) vanishes as n → ∞ thanks to

(3.33).

3. Method of truncated Sobolev functions. In order to obtain (3.39) for r <

11
5 , one can attempt to replace the multiplier vn − v by its bounded truncation

ψn := (vn − v)(1 − min{1, δ−1|vn − v|}) . (δ > 0) (3.42)

That it is in principle possible the reader can verify in Frehse, Málek and Stein-

hauer [21], where the existence of weak solution to the spatially periodic problem

and to the problem with slip boundary conditions (set α = 0 in (3.6)) are estab-

lished for

r >
8

5
. (3.43)

Note however that δ has to be chosen in a suitable way so that the difference

between the integral in (3.39) and the term

∫ T

0

∫

Ω

{S(D(vn)) − S(D(v))} : D(ψn) dx dt

can be made as small as needed (at least for a subsequence). This requirement leads

to show that for all η > 0 there is {vk} ⊂ {vn} and δ independent of k such that

∫

Qk
δ

{
S(D(vk)) − S(D(v))} : D((vk − v) min{1, δ−1|vk − v|}) dx dt ≤ η ,

where Qk
δ := {(x, t) ∈ QT ; |vk − v| < δ} . (3.44)

Note that functions behind the integral sign (restricted toQk
δ ) are uniformly bounded

in L1(QT ). A proof of (3.44) is based on the following assertion:

Let {gn} be such that ‖gn‖L1(QT ) ≤ M for all n. Then for all η > 0 there are

{vk} ⊂ {vn}, {gk} ⊂ {gn} and δ < 1
M independent of k such that

∫

Ak
δ

gk dx dt ≤ η , where Ak
δ := {(x, t) ∈ QT ; δ2 ≤ |vk − v| < δ} .

The bound (3.43) is due to the convective term: it follows from (3.30) that vn
k∂xk

vn ∈

L1(QT ) uniformly if (3.43) holds.
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The reason why the problem completed by the no-slip boundary conditions

is not covered in Frehse et al. [21] has its origin in the fact that divψn 6= 0.

As indicated in Sect. 2.1, it is in general difficult to introduce the pressure to

(3.1). Thus we can modify (3.42) by subtracting a suitable vector field so that

the result is divergenceless. Subtracting hn satisfying div hn = divψn with no-

slip boundary conditions we obtain test functions with correct boundary conditions

but not enough regularity, while subtracting ∇zn, where −∆zn = divψn with

homogeneous Neumann boundary conditions, we obtain suitable test functions only

for problems with Navier’s boundary or without boundary.

Despite these difficulties, we have conjectured (see Frehse and Málek [20]) that

even in the case of no-slip boundary conditions the existence of weak solution for

r > 8
5 can be proved via this method. This conjecture is proved in the recent work

of Wolf [67].

4. Method of Lipschitz truncations of Sobolev functions. This method gives

the existence of a weak solution (see Frehse, Málek and Steinhauer [D6] and Di-

ening, Málek and Steinhauer [14] for stationary problems, and the recent study by

Diening, Růžička and Wolf [15] for evolutionary ones) for

r >
6

5
. (3.45)

In stationary problems, this method stems from the following assertion (see

Acerbi and Fusco [1] and Landes [33] for example):

There exists a C > 0 such that for all un → 0 weakly in W
1,r
0 (Ω) and all λ > 0

there are un
λ ∈ W

1,∞
0 (Ω) such that

‖∇un
λ‖L∞(Ω) ≤ C(d)λ , (3.46)

un
λ → 0 strongly in L∞(Ω) , (3.47)

un
λ → 0 weakly in W

1,s
0 (Ω) , (∀s ∈ [1,∞)) (3.48)

|{x ∈ Ω; un(x) 6= un
λ(x)}| ≤ Cλ−r‖un‖r

W 1,r(Ω) . (3.49)

We remark that it follows from the proof that

|{x ∈ Ω; un(x) 6= un
λ(x)}| = |{x ∈ Ω; M(|∇un(x)|) +M(un(x)) > λ}| .

where M(f) denotes the Hardy-Littlewood maximal function to f .

Note that in general for any µ > 0 one has

|{x ∈ Ω; M(|∇un(x)|) +M(un(x)) > µ}| ≤ Cµ−r‖un‖r
W 1,r(Ω) . (3.50)
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.

Using these observations, we can replace the test function vn−v by its Lipschitz

truncations (vn−v)λ. The bound (3.45) is due to the convective term, surprisingly.

We have
∫

Ω

vn ⊗ vn : ∇(vn − v)λ dx =

∫

Ω

v⊗ v : ∇(vn − v)λ dx

+

∫

Ω

[(vn − v) ⊗ vn + v ⊗ (vn − v)] : ∇(vn − v)λ dx .

Taking λ > 0 and r > 6
5 fixed and letting n→ ∞ we observe that the first term at

the right hand vanishes thanks to (3.48) applied to un = (vn−v), while the second

term tends to 0 thanks to (3.46) and the strong convergence of vn → v in L2(Ω).

Note again that λ has to be chosen in an appropriate way so that the integral
∫

Ωk
λ

{
S(D(vk)) − S(D(v))} : D((vk − v)λ) dx

with Ωk
λ := {x ∈ Ω; (vk − v)λ(x) 6= (vk − v)(x)}

(3.51)

is small. Here, the following assertion is used (see [D6] for details):

Let {gn} be such that ‖gn‖L1(Ω) ≤ K for all n. Then for all η > 0 there are

{gk} ⊂ {gn}, {vk} ⊂ {vn} and λ ≥ 1
η independent of k such that

∫

Ak
λ

gk dx ≤ η,

where Ak
λ := {x ∈ Ω;λ < M(|∇(vk − v)(x)|) +M(vk(x) − v(x)) ≤ λ2}.

4. Novelties of the studies in this collection

The following list aims to clarify why we think that the mathematical analysis of

models studied in this thesis is of interest and what are the main new observations

achieved in the theoretical analysis of the relevant problems.

• The studies [D1]–[D5] opened a new topic of investigations in the area of

mathematical analysis of incompressible Navier-Stokes equations and its gen-

eralizations. At the first glance, the governing systems have very similar struc-

ture, and the same unknowns as the Navier-Stokes equations. On the other

hand, even investigation of simple flows in special geometrical setting shows

that flows for fluids with varying viscosity may differ tremendously from flows

of the Navier-Stokes fluid. The studies [D1]–[D5] switch the attention in

the analysis from the velocity field to the pressure. Note that the pressure

is frequently elimininated from the analysis of the Navier-Stokes equations

and similar systems by projecting the equations to the set of divergenceless
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functions. On the other hand, there are recent regularity criteria for the evo-

lutionary Navier-Stokes system in three dimensions (see Seregin and Šverák

[59] or Titi [64]) calling for understanding of the properties of the pressure.

Naturally, the pressure cannot be eliminated from analysis in problems where

the material coefficients are pressure dependent.

• To our knowledge, to date there is no global existence theory that is in place

for both steady and unsteady flows of fluids whose viscosity depends purely on

the pressure. Previous studies by Renardy [55], Gazzola [22] and Gazzola and

Secchi [23] provide rather restrictive results not supporting the fact that fluids

with pressure dependent viscosities are popular in many areas of engineering

science. The studies [D1]-[D5] show that one can build a consistent math-

ematical theory for such fluids. A key step is based on the observation that

adding the sublinear dependence of the viscosity on the shear rate may help

significantly. Need to say that in most experimental studies of the viscosity-

pressure dependence the dependence of the viscosities on the shear rate is

not measured. The exponential dependence of the viscosity on the pressure,

which is quite popular in applications, does not fulfil the assumptions need in

the presented consistent theory. However, the exponential viscosity-pressure

relationship can be approximated by a suitable sequence of viscosities, de-

pending on the shear rate and the pressure, for which the theory developed

in [D1]–[D5] is applicable.

• The models for incompressible fluids with the vicosities depending on the

mean normal stress (the pressure) serve as an example of implicit constitutive

models. Implicit constitutive theory is very recent and modern approach in

continuum physics used to capture in elegant way a complicated response of

complex materials, see Rajagopal [46] and [47]. In our opinion, it is of interest

that the mathematical results to some of these implicit models are already in

place.

• In the existence theory the notion of weak (or suitable weak) solution seems

to be very natural. This solution belongs to function spaces that come from

the apriori estimates that are in our case giving the weak convergence of the

velocity gradient and the pressure. Methods how one can obtain the com-
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pactness (almost everywhere convergence) for the velocity gradient and the

pressure represent in our opinion a main discovery in the theory.

• The analysis of flows of incompressible fluids with pressure (and shear-rate)

dependent viscosity requires to have the pressure in hands from the beginning.

In order to be able to establish the results for the evolutionary model in a

bounded domain we observe that Navier’s slip boundary conditions are more

suitable for introducing the pressure globally. It is an open question whether

one can introduce the pressure globally also for no-slip boundary conditions.

Interestingly, the results obtained for the Navier’s slip boundary conditions

seem to be new even for the classical Navier-Stokes or power-law fluids.

• The method of trajectories developed in [D7] represents a new tool to study

long-time dynamics of infinite-dimensional dynamical system. While standard

approaches investigate the properties of all equilibria described by stationary

problems, the method of trajectories deals with solution trajectories of a fixed

finite length and looks for their long-time properties in Bochner spaces. The

behavior of these trajectories is still described by evolutionary PDEs, which

reveals to be a significant advantage.

• The method how one can use Lipschitz truncations of Sobolev functions to

obtain compactness of the velocity gradient seems to be an original approach

developed in [D6] in order to extend the available existence theory for large

range of model parameters, interesting from the point of view of engineering

applications.

• In the regularity theory of weak solutions to systems of nonlinear PDEs,

the extensions of the results up to the boundary is frequently missing. In

addition, the results may differ in dependence on the prescribed boundary

conditions. The articles [D9] and [D10] not only present the results valid up

to the boundary for homogeneous Dirichlet problem, but more importantly

they provide techniques how the regularity near the boundary of a domain

should be investigated.

• The results, methods and tools developed in the analysis of models considered

in this dissertation are used or extended in the analysis of more complicated

models for incompressible fluids: inhomogeneous fluids, rate type fluids, fluids
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with the viscosity dependent on the temperature, electric or magnetic field,

concentration, power-law like fluids with a variable power-law exponent, etc.
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