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RESUME

Teze disertace jsou souhrnem vypocetnich postupi a vysledki nume-
rickych simulaci prezentovanych v ramci pfispévki obsazenych v prvnich
tfech kapitolach disertace. Pozornost je zaméfena na vicetroviiové mo-
delovéni kompozitd uhlik-uhlik (C/C) s platnovou vazbou.

Vlivem pouzitych vyrobnich procest vykazuji tyto materidlové sys-
témy urcity stupen geometrické neusporadanosti charakterizované fadou
imperfekci, a to nejen na trovni jednotlivych svazka vladken ¢i platnové
vazby, ale i na makrotrovni, tedy na trovni urcité vicevrstvé konstrukce.
Ukazuje se, ze tyto imperfekce maji zasadni vyznam pro predikci vysled-
nych efektivnich materidlovych vlastnosti na vsech trovnich. Stézejnim
krokem analyzy textilnich kompoziti tedy zlstdva spolehliva kvantifi-
kace jednotlivych systému imperfekci.

Zatimco na mikrotirovni hovotfime viceméné o nadhodném tsporadani
vldken v priéném fezu jednotlivych svazki, tak na mezotrovni a makro-
drovni se jiz jednd o urcité poruchy vnitini struktury platnové vazby s
nepravidelnym usporadanim jednotlivych vrstev v celém laminatu. Pti-
kladem jsou vzajemné posuny vrstev, nerovnomérna vyska jednotlivych
svazkli vlaken ¢i nepravidelné zvlnéni v jejich podélném sméru. Nejdtile-
zit1, kterd v nékterych pripadech dosahuje az 30% celkového objemového
zastoupeni. Vyznamnou roli pfi kvantifikaci jednotlivych typt geomet-
rickych imperfekci a poruch vnitini struktury materiali hraje v tomto
ptipadé obrazova analyza.

V praci byl pouzit systém analyzy obrazu LUCIA G, umoznujici
prevedeni ptuvodné barevného obrazu na obraz binarni. Binarnich ob-
razi skutec¢né mikrostruktury lze pak pfimo vyuzit pfi popisu této mi-
krostruktury pomoci riznych statistickych deskriptort, jakymi jsou na-
priklad jednobodova a dvoubodové pravdépodobnostni funkce a “Lineal
path” funkce. Informace obsazené v jednobodové a dvoubodové prav-
dépodobnostni funkci lze pfimo vyuzit pfi analyze skutec¢nych materia-
lovych systémi, a to ve spojeni s rozsifenymi Hashin-Shtrikmanovymi



varia¢nimi principy. Takovato analyza se vSak vétSinou omezuje pouze
na mikrodroven. Na mezourovni anebo v pfipadé, kdy je tfeba postih-
nout detailni priibéh lokalnich poli napéti a deformace, vyzaduje analyza
aplikaci reprezentativniho objemového modelu v podobé periodické jed-
notkové buniky ve spojeni s homogenizaci prvniho fadu. V ptipadé ne-
pravidelnych struktur pak hovorime o tak zvané statisticky ekvivalentni
periodické burice (SEPUC) odvozené na zékladé formulace vhodného op-
timaliza¢niho problému. V nasem piipadé se ovédcil postup zalozeny na
minimalizaci ¢verct rozdild dvoubodové funkce pravdépodobnosti sku-
tecné mikrostruktury a mikrostruktury aproximované jednotkovou bun-
kou.

Vedle jiz zminénych vypoctlt zalozenych na aplikaci Hashin-Shtrik-
manovych variac¢nich postupt nachazeji své uplatnéni i dalsi klasické
mikromechanické modely, a to nejen na mikrotrovni, ale i na mesotrovni,
kdy informace o mikrostruktuie jsou omezeny napiiklad na histogramy
rozlozeni tthlu orientace svazki vlaken v jejich podélném sméru. Metoda
Mori-Tanaka v tomto pfipadé nabizi vhodnou alternativu v porovnani
s vypocetné podstatné naroc¢néjsimi numerickymi simulacemi na béazi
metody koneénych prvki.

Zvl1astni kategorii poruch struktury materidlu pfedstavuje pérovitost.
Nevyhnutelnost zavedeni porozity pfi predikei efektivnich vlastnosti C/C
kompoziti byla zatim ovéfena v ramci studie dvourozmérného vedeni
tepla. Rozsifeni této problematiky na stanoveni makroskopickych defor-
macnich charakteristik, at uz v rdmci periodické homogenizace, nebo
uzitim mikromechanickych metod, je pfedmétem soucasného vyzkumu.

Podrobnéjsi popis jednotlivych bodi obsazenych v pfedchozich od-
stavcich je naplni kapitol 3 az 5. Kapitola 3 je vénovana popisu mik-
rostruktury na trovni platnové vazby. Vysledky jsou nasledné pouzity
v kapitole 4, a to jednak pfi formulaci vhodné statisticky ekvivalentni
periodické buiiky a jednak v pfimém spojeni s klasickou mikromecha-
nickou metodou Mori-Tanaka. Pfedlozené homogeniza¢ni postupy vsak
postradaji jakékoliv informace o pérovitosti. Tomuto zasadnimu nedo-
statku, ktery je nyni predemétem intenzivniho vyzkumu, je vénovana
kapitola 5. Zavérecna kapitola pak podava souhrn dosazenych vysledki
a naznacuje uréité sméry dalsiho vyzkumu v oblasti C/C kompozitt.
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MICROMECHANICAL MODELING OF PLAIN WEAVE
IMPERFECT C/C COMPOSITES

1 SUMMARY

After fabrication the carbon-carbon (C/C) plain weave textile composi-
tes often show a certain degree of geometrical or material disorder inclu-
ding yarn waviness and misalignment or nesting of individual fiber tows
together with intrinsic material porosity observed at all relevant scales.
A brief survey of recently developed approaches for estimating overall
elastic stiffnesses or thermal conductivities of such composite systems is
presented in this paper. Depending on the source and type of available
geometrical data the homogenization scheme usually relies either on fi-
nite element (FEM) simulations performed for a suitable Periodic Unit
Cell (PUC) or employs one of the popular averaging techniques such
as the Mori-Tanaka (MT) method. While existing applications of both
methodologies are encouraging, there still exists a number of steps to be
completed in the course of the future research.



2 INTRODUCTION 6

2 INTRODUCTION

Fiber-reinforced composites present a well-established and attractive ma-
terial variant used in numerous branches of engineering design with ap-
plications ranging from rehabilitation and repair of concrete and masonry
structures to design of bio-compatible medical implants [37]. In compa-
rison with traditional materials, composites offer higher strength, light
weight, non-corrosive properties, dimensional stability, good conforma-
bility and possibility of performance-based design. Among the most pro-
minent material systems exhibiting these properties remain plain weave
textile composites produced by orthogonal interlacing of yarns bonded
to either polymeric or pyrolytic carbon matrix. An ever growing interest
in these material systems is further promoted by their appealing mecha-
nical performance, superior impact tolerance and wear resistance [7].

Although frequently used in practice, an accurate and reliable mecha-
nical analysis of woven composites still presents a considerable challenge
owing to their complex geometry displayed at several length scales. In
this paper the C/C plain weave textile composite is adopted as one par-
ticular representative of these complex geometries. Apart from nontrivial
geometrical texture of textile composites in general, the C/C composi-
tes in particular, see Fig. 1, are prone to various types of geometrical
imperfections and relatively high porosity arising directly from the pro-
cess of fabrication, which is characterized by thermal decomposition and
transformation of an initial polymeric precursor into the pyrolytic car-
bon matrix through several steps of carbonization, re-impregnation and
final graphitization [5, 36]. As further evident from Fig. 1, the major
contribution to the porosity, which may exceed 30% of the overall vo-
lume [44, 46], is due to crimp voids and delamination cracks, which are
usually classified as inter-tow voids (Fig. 1(a)), as well as due to intra-
tow voids represented by pores and transverse cracks (Fig. 1(b)), see [45]
for more details.

A reliable and accurate description of such material systems thus
requires the following major aspects to be taken into account:

e Geometrical imperfections represented by yarn waviness, its cross-

sectional variability together with their misalignment and nesting
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Fig. 1: Color images of a real composite system: (a) Scheme of multiscale
structural model (from top - transverse and longitudinal view
of fiber tow composite, composite unit cell, composite lamina,
composite plate), (b) Carbon tow microstructure showing major
pores and transverse cracks.

within the laminate structure, see Fig. 1(a4).

e High porosity of C/C composites on both the microscale (level of
individual yarns, Fig. 1(b)) and mesoscale (level of individual plies,
Fig. 1(a2)).

The purpose of this paper is to provide an overview of recently develo-
ped approaches that allow, at least to some extent, for incorporating the
above items into the predictions of the mechanical and thermal proper-
ties of C/C composites. Application of classical micromechanical schemes
such as the Mori-Tanaka method as well as detailed finite element simu-
lations that assume an existence of a certain representative periodic unit
cell will be discussed. Since the present survey is still a part of an ongo-
ing research the two approaches will be presented with all their current
limitations. Nevertheless, possible routes for their improvement will be
given.

The rest of the paper is organized as follows:

e Quantification of the real meso structure through a laborious eva-
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luation of images of real material samples is briefly addressed in
Section 3. The format of available information then drives the se-
lection of a particular numerical model.

e Neglecting the material porosity, a hardly justified step for C/C
composites but acceptable for carbon-polymer (C/P) composites,
we proceed in Section 4 with the modeling of dominant geometrical
imperfections previously quantified. An idealized three-dimensional
periodic unit cell originally formulated in [25] is briefly outlined in
Section 4.1 together with essential steps of the FEM based simu-
lations in the framework of the first-order homogenization tech-
niques. This unit cell then serves as a point of departure for the
formulation of the Mori-Tanaka method presented in Section 4.2
as well as more complex finite element simulations discussed in
Section 4.3 particularly in conjunction with the construction of so
called Statistically Equivalent Periodic Unit Cell (SEPUC).

e Section 5 then offers possible routes for incorporating the material
porosity into computational modeling. A simple example of multis-
cale two-dimensional finite element simulation of heat conduction
problem with emphases on material porosity is presented.

e Several concluding remarks suggesting the main stream of the
current research are given in Section 6.
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3 MICROSTRUCTURE EVALUATION

Elastic as well as inelastic behavior of textile composites assuming well
defined geometry has been examined in many theoretical studies [53, 7,
6, 10, 11, 9]. Comparable investigations addressing the behavior of actual
material systems have emerged, however, only recently [54, 27, 58]. It has
been reported that actual microstructure, not reflected in idealized com-
putational models, may have a significant impact on model predictions.
A sufficiently detailed quantitative analysis of the real microstructure
is therefore desirable. In this section we describe the essential results of
such an analysis when applied to plain weave textile composites.

Fig. 2(a) shows a particular composite laminate consisting of eight
layers of carbon fabric Hexcel G 1169 bonded to a carbon matrix. The
total of twenty such specimens having dimensions of 25 x 2.5 x 2.5 mm
were fixed into the epoxy resin and after curing subjected to final surface
grounding and polishing using standard metallographic techniques to
produce specimens suitable for the subsequent image analysis.

Using the results provided by image analysis software LUCIA G
allows us to derive the frequency spectrum of the Fourier series which
in turn can be used to describe the variation of the yarn shape along its
longitudinal direction [19, 21, 20]. As reported in [22, 51] the crimp wa-
veform is subject to deformation when pressed during the manufacturing
process and the frequency spectrum is therefore distorted compared to
that of the unprocessed (free) fabric. Deformation of reinforcements such
as the nonuniform waviness and to some extent also the mutual shift of
individual layers also visible in Fig. 2(a) can be reflected through histo-
grams of inclination angles derived from centerlines of individual yarns,
see Figs. 2(e)(f) and [51] for more details. We describe in Section 4.2 how
these micrographs can be effectively used to provide efficient estimates of
the overall elastic response of the composite employing the Mori-Tanaka
micromechanical model.

Nonuniform waviness of the yarn, however, is not the only imper-
fection observed in real material systems. Nonuniform cross-sectional
aspect ratio of yarns, their misalignment in the textile plane and nesting
have been already mentioned. All these imperfections can be clearly iden-



3 MICROSTRUCTURE EVALUATION 10

Frequency[(%) =

RS

10 15 20

-10 -5 4] 5
Inclination angle [deq

(d)

Fig. 2: Quantification of microstructure: a) color image of real composite

sample, b) binary image, c) approximation of centerlines, d) dis-
tribution of inclination angles

tified from binary images of actual microstructures such as the one plot-
ted in Fig. 2(b). Several such sections taken from various locations of the
laminate are usually examined to provide for averages of various geome-
trical parameters including dimensions, shape of the yarn cross-section
and its thickness, etc. The resulting statistics are stored in Table 1.

Tab. 1: Quantification of microstructure [44, 46]

statistics [um) a h b g
Average 2250 | 300 | 150 | 400
Standard deviation | 155 | 50 | 20 | 105

We emphasize that neglecting the porous phase, as has been done
when generating the respective binary images, may cause severe overes-
timation of the expected overall properties. When, on the other hand,
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comparisons of various computational strategies (averaging schemes and
PUC analyses) are of the main interest, we may accept such limitation
and use the values from Table 1 to construct an ideal periodic unit cell
based on the geometrical model proposed in [25]. Geometrical details of
the unit cell are plotted in Fig. 3. This particular approach is adopted in
Section 4.2 to provide for reference values of the effective stiffness when
searching for a suitable geometrical representation of a yarn for which
the closed form solution of the Eshelby tensor is available. Another ap-
plication is discussed in Section 5.1 with reference to effective thermal
conductivities.

Detailed evaluation of individual images is on the other hand a re-
latively tedious task. To avoid this step, we introduced in our previous
works [57, 58, 59] the concept of statistically equivalent periodic unit
cell derived by matching the material statistics of real and simplified
microstructures. It is of interest to point out, see also [58], that appli-
cation of this strategy in conjunction with a simple computational model
of Fig. 3 failed to represent most of the assumed imperfections. To re-
medy this situation, the authors proposed an extension of the original
model given in terms of a two-layered PUC displayed in Fig. 6. The es-
sential modeling steps are outlined in Section 4.3. Further details can be
found in [60].
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Fig. 3: Idealized periodic unit cell: a) cross-section of an equivalent peri-
odic unit cell, b) three-dimensional view, c) finite element mesh
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4 TREATING GEOMETRICAL IMPERFECTIONS

In this section two computational strategies are considered to treat actual
or imperfect composites depending on the available input data discussed
in the previous section. Since both approaches rely on the finite element
analysis of a periodic unit cell, we begin in Section 4.1 with a brief
summary of the application of the first order homogenization in the
framework presented in [31].

4.1 Idealized periodic unit cell

Consider a representative volume element given, e.g. in terms of the PUC
in Fig. 3(b). To obtain the resulting discretized model shown in Fig. 3(c)
the principles of matched mesh generation [52, 29] were implemented into
Advancing Front method-based automated mesh generator T3D [40].
Identical approach can be adopted for more complex geometries such as
the one proposed in Section 4.3.

The theoretical formulation now proceeds as follows. Suppose that
the periodic unit cell in Fig. 3(c) is loaded by kinematically admissible
macroscopic uniform strain E. In view of the assumed microstructure
periodicity the local displacement field u(x) then admits the following
decomposition

u(x) = E-x+u*(x), (1)

where u*(x) represents a periodic fluctuation of u(x) due to the presence
of heterogeneities. The local strain tensor then assumes the form

e(x) = E+¢"(x), (2)

where the fluctuating part €*(x) vanishes upon the volume averaging.
Next, introducing Eq. (2) into the principle of virtual work (the Hill-
Mandel lemma) yields (§E = 0 for prescribed E)

SE : X = 0= (de(x) : o(x)) = (6’ (x) : o' (x)) = (6™ (x) : oj(x)>(é)



4 TREATING GEOMETRICAL IMPERFECTIONS 14

where (-) stands for the volumetric averaging with respect to the PUC
and -¢ is used to denote a quantity in the local coordinate system. The
local stress field then reads

o'(x) = LY(x) : (Ef + E*Z(x)) , (4)

where L’ is the material stiffness tensor. Relating the strain tensors in
the local and global coordinate systems by well-known relations Ef =
T.: E, ** = T.: €*, see e.g. [4], and inserting Eq. (4) into Eq. (3)
yields the stationarity condition of a given problem in the form

0= <5€*(x) CT.(x): [L(x): To(x) : (E+e*<x))]>, (5)

to be satisfied for all kinematically admissible variations  E and de*.

The volume averages of the local stresses derived from the solutions
of six independent elasticity problems, in which one of the components
of the macroscopic strain vector E is set equal to one while the others
vanish, then furnish individual columns of the 6 x 6 macroscopic homo-
genized stiffness matrix LFEM,

4.2 Application of the Mori-Tanaka method

The lack of periodicity, presence of imperfections or random nature of
actual microstructures often favored the use of well established effective
media (effective field) theories [48, 17]. If reflecting the essential details of
the underlying microstructure they yield acceptable accuracy over a wide
range of material systems. Among others the Mori-Tanaka method has
earned a considerable interest particularly due to its explicit nature [32,
1]. Although this method has been extensively used to provide estimates
of overall composite response in many engineering applications its use
in the field of textile composites emerged only recently with reference to
knitted composites [14].

In the case of imperfect plain weave textile composites the following
main objectives can be stated: (a) to introduce the non-uniformities of
the yarn path represented by histograms of inclination angle distribution
into the micromechanical model; (b) to identify an appropriate shape of
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an equivalent inclusion substituting actual yarns; (c) to assess its optimal
dimensional description, which establishes certain links to geometrical
uncertainties of real systems other than those contained in histograms
of Fig. 2(d).

To begin we summarize the essence of this method in the form presen-
ted in [14]. In particular, consider an N-phase composite with a distingu-
ishable matrix phase having the stiffness tensor Ly and being reinforced
by N — 1 families of ellipsoidal heterogeneities. Each heterogeneity is
characterized by the stiffness tensor L, and occupies a volume §2,.. With
reference to [1] the Mori-Tanaka estimates of the overall stiffness tensor
L reads

-1

N-1 N-1
LMT = + (Z ¢ (L, — LO)T,,> (eol +) chr> , (6)

r=1

where ¢, denotes the volume fraction of the r-th phase. The correspon-
ding partial stress concentration factor T, has the form

T, = (I + P, (Lr - I-O))i1 ) (7)

where the P, tensor is provided by

P, = / Mo(x — x')dx’. (8)
Q.
Function Iy is related to Green’s function of an infinite medium with
stiffness tensor Lg. It follows from the classical Eshelby work [8] that P,
for ellipsoidal inclusions is constant and can be evaluated as

P, = 5#—517 (9)

where S,. is the Eshelby tensor. When the matrix phase is isotropic,
explicit expressions for S, can be found in [8].

As pointed out in [2, 3] the Mori-Tanaka method provides diagonally
symmetric estimates of the overall stiffness matrix in two-phase systems
of any phase geometry, and in multiple systems which are reinforced by
aligned inclusions of identical shape. To arrive at diagonally symmetric
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predictions for the studied system we proceed as follows. First, consider
a two-phase material system (N = 2) counsisting of an isotropic matrix
reinforced by identical heterogeneities with different orientations. Sup-
pose for a moment that all heterogeneities posses the same orientation.
Then, the overall stiffness tensor is symmetric [2] and can be decomposed
as

MY — Lo+ey (L — L) T) (L —el+ e T) 7 =LO 4L, (10)

Notice that due to assumed isotropy, the tensor L is independent of the
reference coordinate system while L™ stores the orientation-dependent
part. Following [41], the overall stiffness of the system is defined as

LS~ = (M) = L0 4o (LY, (11)

where the curly brackets {} denote averaging over all possible orientati-
ons. In particular, when the orientation of each heterogeneity is described
using the Euler angles, see Fig. 4, the orientation-dependent part can be

X3

Fig. 4: Definition of the Euler angles
expressed as

L$1(0,6.8) = aip(0, 6, B)asq(0, 6. B)ar. (0, 6, Bars(0, 6, B)LLL),(0,0,0),

where functions a;;(0, ¢, 5) can be found, e.g. in [41, 56, Appendix A].
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The orientation average then follows from

27 2 T
Ly = /0 /0 /0 LV, 6, 8)g(60, 6, 5) d0dsdp,  (12)

where g(0, ¢, ) denotes the joint probability density describing the dis-
tribution of individual angles, here represented by already mentioned
histograms of inclination angle. For convenience, the same distribution
of angles in two perpendicular directions is assumed to account for three-
dimensional nature of the problem. Similar approach was adopted in [38]
for three-dimensional orientation distribution of pores derived from two-
dimensional images of chemical vapor infiltrated (CVI-infiltrated) car-
bon felt.

As reported in [43] a sufficient number of histograms is needed to
properly account for yarn path imperfections both in the longitudinal
and through thickness direction. Several particular examples appear in
Fig. 5. The resulting effective stiffnesses then follow from statistical eva-
luation of a given set of solutions provided by Eq. (11).

To identify an appropriate shape of an equivalent inclusion that dri-
ves the solution of the Eshelby problem we recall an ideal PUC discussed
in Sections 3 and 4.1. In this particular case, the joint probability density
function ¢(f, ¢, 3) describing the distribution of individual Euler angles
for the warp system has the form, recall Fig. 3(b),

[ 1/(2a) if¢p=0,f=0and7n/2—a<6<7/2+a,
9(0,,6) = { 0 otherwise,

a =arctan | — | .
2a

Comparing results derived from Eq. (11) with those provided by fi-
nite element analysis of an ideal or reference PUC promotes an ellipsoid
inclusion as the most appropriate representative of the actual yarn ge-
ometry as oppose to rather intuitively expected cylindrical one. These
comparative studies further suggest that the choice of the Eshelby ten-
sor, which essentially depends on the ratio of its semi-axes, can hardly
be made arbitrary.

where
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Fig. 5: Real measured histograms of inclination angle [51]

A simple procedure based on the solution of a certain minimization
problem is offered in [43] to define an optimal shape of the equivalent
ellipsoid. Therein, the optimal values of the ellipsoid semi-axes are found
by matching the FEM results with the MT predictions for the reference
PUC. To take into account additional uncertainties in the textile geome-
try a training set of PUCs, rather than a single one, is generated based
on the statistical data listed in Table 1. To solve the underlying problem,
which consists of the minimization of the error between the FEM and
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MT solutions given by
LE;EM _ L%IT

?

E LFEM LMT _
(L] ) i=07-~75,]2&}-{~75,3ij¢0

MT
L3

we employed a version of the genetic algorithm (GA) GRADE [15].
Further details can be found in [26, 43]. This step thus completes the
last of the three objectives stated in the second paragraph of this section.

4.3 Construction of statistically equivalent periodic
unit cell

It is often desirable to derive detailed representation of local fields rather
than the volume phase averages only as provided by the Mori-Tanaka
predictions. Attention is then usually given to periodic unit cell analyses.
To exploit the benefit of periodic fields, while at the same time account
for uncertainties associated with real microstructures, we introduced in
our recent works [57, 58, 59] the concept of statistically equivalent peri-
odic unit cell. This approach will be now briefly reviewed in the context
of plain weave textile composites.

¢Az

Fig. 6: Scheme of a two-layer idealized unit cell

We expect, see also [58], that reasonably accurate predictions of the
overall response of actual multilayered system can be found from the



4 TREATING GEOMETRICAL IMPERFECTIONS 20

analysis of a two-layered periodic unit cell shown in Fig. 6. Such a unit
cell is fully described by seven independent parameters

y=la,b,g h Ay, Ay AL (13)

The principal problem of interest is to determine these parameters such
that the resulting macroscopic behavior of the unit cell will compare to
that of actual material. The stepping stone of the solution is an ad hoc
assumption stating that as long as the two systems are geometrically
similar, then they will also yield similar overall response. So far, this
has been confirmed for random uniaxial fiber reinforced composites with
the fiber volume fraction exceeding 0.4 [57]. Such an assumption then
opens the way for quantifying the microstructural details of real and
equivalent systems on the bases of various statistical descriptors inclu-
ding the two-point probability function S(x) [49] and the lineal path
function L(x) [28]. Both descriptors can be easily computed for digitized
microstructures such as the one displayed in Fig. 2(b). In particular, the
Fast Fourier transform library FFTW [12] is used for the S function,
while the sampling template procedure is introduced for the determi-
nation of the lineal path function [48].

In our specific case of textile composite it is assumed that the micro-
structure configuration is characterized by microstructural function as-
sociated with (at most) warp and fill directions; i.e. functions S,, and
L., for the warp cross-section and descriptors Sy and Ly for the fill
cross-section, recall 3(b). With reference to [55], the following quantities
are introduced to measure the similarity between the SEPUC and the
original microstructure:

imaw Jmazx

Fy) = Y Y Y Sy.ig)-5)°, (14

pe{w,f} i=tmin j=Jmin

imax Jmaz

Y Y (i -L),  (15)

pG{’LU f}Z tmin J=Jmin
Fsii(y) = asFs(y)+arFr(y), (16)

where, e.g. S, (y,4,7) denotes the two-point probability function deter-

e

—

<
I
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Fig. 7: Target microstructure: a) binary image, b) two-point probabi-
lity function, Statistically optimal periodic unit cell: ¢) optimi-
zed binary image, d) two-point probability function, e) three-
dimensional model

mined for the warp cross-section of a SEPUC described by parameters
y and the value of argument x = [i, j]. The a, symbol in (16) denotes a
scale factor used to normalize the influence of both descriptors.

Finding appropriate dimensions of the unit cell then amounts to the
minimization of the above set of equations. The fact that due to the
limited bitmap resolution, the objective functions (14)-(16) are discon-
tinuous, promotes again, recall Section 4.2, one of the evolutionary op-
timization algorithms. Here, the desired solution was delivered with the
help of stochastic optimization algorithm RASA [30, 16].
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Examples of a targeted microstructure and the resulting SEPUC to-
gether with the variation of corresponding two-point probability functi-
ons S are illustrated in Fig. 7. From the qualitative point of view, it is
evident that the statistically optimized unit cell tries to reproduce the
matrix rich regions together with the strong nesting of individual layers.
Fig. 7 then shows a three-dimensional view of the actual computational
model intended for the predictions of the overall mechanical properties in
the framework of the first-order homogenization outlined in Section 4.1.
The results reported in [60] indicate comparable predictive capabilities
of both the Mori-Tanaka method and periodic unit cell simulations for
the present material system with limitation to the assumed zero volume
of the porous phase. Several routes enabling to overcome this restriction
are discussed in Section 6. Primary work on this subject with reference
to the solution of heat conduction problem is summarized next.
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Fig. 8: Representative segment of eight-layer plain weave fabric laminate.

5 TREATING POROSITY

Although geometrical imperfections present a distinct source of uncer-
tainties they may prove, in comparison to a very high intrinsic porosity
typical of C/C textile composites, far less important particularly from
the overall response point of view. This was confirmed in the thesis of
Palan [35] who compared theoretical predictions of overall thermal pro-
perties of C/C composites assuming an ideal pore-free structure with
those obtained experimentally. It was shown that neglecting the porous
phase may result in an order of magnitude difference between predicted
and measured data. A thirty percent reduction in overall stiffness over
the range of 20% of porosity presented in [38] for CVI-infiltrated carbon
felts further demonstrates a significant impact of pores on the overall
behavior even in the elastic regime. Note that in the case of C/C textile
composites the intrinsic porosity may well exceed 30% at the structu-
ral level. Despite of that, a little attention has apparently been given
to computational models of textile composites that properly account for
the presence of pores. The only work we are aware of is due to Kuhn
and Charalambides [23, 24]. Unfortunately, a highly idealized geometry
of the porous space assumed in their study can hardly accommodate all
complexities that appear in real systems.

Fig. 8 shows an actual structure of voids at different scales. The main
contribution to the overall porosity due to crimp voids, delamination
cracks, matric pores and transverse cracks developed within individual
yarns during fabrication can be easily identified. An accurate geomet-



5 TREATING POROSITY 24

rical quantification of various sources is not a trivial task. Therefore, a
relatively simple approach based on the formulation of an ideal periodic
unit cell of the type already presented in Section 4.1 is selected as our
point of departure. A particular application to evaluation of estimates
of overall thermal conductivities is selected on purpose, since the two-
dimensional restriction adopted in this study can be well supported by
comparative experimental measurements.

5.1 Multiscale modeling of heat conduction problem

Suppose that the homogenized effective conductivities of the yarn are
already known from an independent micromechanical analysis perfor-
med on the level of individual fibers [57, 47]. The objective now is to
find these parameters on the mesoscopic level. To that end, we recall
the representative section of the composite laminate in Fig. 8. A detai-
led inspection of this micrograph reveals three more or less periodically
repeated geometries. For better view we refer to Figs. 9(a)-(c).

Fig. 9: Homogenization on meso-scale: (a)-(b) PUC1 representing car-
bon tow-carbon matrix composite, (c¢)-(d) PUC2 with vacuoles
aligned with delamination cracks due to slip of textile plies, (e)-(f)
PUC3 with extensive vacuoles representing the parts with textile
reinforcement reduction due to bridging effect in the middle ply.

Several such sections taken from various locations of the laminated
plates were examined, again with the help of image analyzer LUCIA G,
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to obtain averages of various parameters including segment dimensions,
yarn thickness, shape of the yarn cross-section and also position, size
and location of large vacuoles. Approximately 100 measurements were
carried out for each segment and subsequently utilized in the formulation
of corresponding periodic unit cells displayed in Figs. 9(d)-(f).

Similarities between mechanical and heat conduction problem allows
us to continue in the manner analogous to that described in Section 4.1.
Hence, the first order homogenization theory is invited again to provide
for the effective conductivities. This suggests that the PUC can be loaded
along its entire boundary by certain temperature field 6(x) derived from
a uniform mesoscopic temperature gradient H. In view of the underlying
finite element analysis the local temperature gradient h(x) then admits
the following decomposition

h(x) = H + B(x)6, (17)

where B(x) stores the derivatives of the element shape functions and
07 lists the nodal values of the fluctuation part of the temperature field
being periodic. Assuming steady state conditions the Fourier inequality
yields

(8h(x)"x(x)h(x)) =0, (18)
where x(x) is the local (phase) conductivity matrix and (a) represents
the volume average of a given quantity, i.e. (a) = ﬁ andQ. For a

detailed derivation of Eq. (18) the reader is referred to [33, 47]. Once
the nodal temperatures 6 are known from the solution of Eq. (18), the
solution proceeds by calculating the volume average of the local heat
flux as

1
Q = (a(x)) =~ [ X(h(x)ac (19)
to get the macroscopic constitutive law in the form

Q=-x""H, (20)

where x"°™ stands for the searched homogenized effective conductivity

matrix. Note that the components of this matrix follow directly from
the solution of two successive steady state heat conduction problems. To
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that end, the periodic unit cell is loaded, in turn, by each of the two
components of H, while the other vanishes. The volume flux averages,
Eq. (19), normalized with respect to H then furnish individual columns
of x™. The required periodicity conditions (the same temperatures
0 on opposite sides of the unit cell) are accounted for through multi-
point constraints. In our particular case it suffice to assign the same code
numbers to respective periodic pairs.

A similar dual framework can be formulated for the effective resisti-
vity matrix. Details are available in [47].

In order to compare theoretical predictions with experimental measu-
rements it was necessary to derive the macroscopic estimates of thermal
conductivities by repeating the above procedure for the actual laminate.
However, instead of discretizing the real meso-structure, the laminate
was built from individual homogeneous blocks having the properties deri-
ved from the previous homogenization step. The same stacking sequence
as evident from Fig. 8 was considered.

Tab. 2: Effective macroscopic thermal conductivities of the laminate
[Wm~'K~!] (The number in parentheses indicates the difference
between a numerical value and experimental data.)

Analysis k-longitudinal | k-transverse
Prediction 8.47 (15.3%) | 1.66 (3.75%)
Measurement 10.00 1.60

Taking into account the possible errors in the determination of phase
material parameters (carbon fibers and carbon matrix) on the one hand
and errors associated with the laboratory measurements on the other
hand, the results summarized in Table 2 are rather encouraging suppor-
ting not only the assumed uncoupled three-level homogenization pro-
cedure but also the selected computational model reflecting all essential
details of the meso-structure including porosity.
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6 CONCLUSIONS AND DISCUSSION

Several approaches allowing us to treat various types of uncertainties
present in actual plain weave carbon-carbon textile composites were re-
viewed. It is shown that predictions of overall composite response are
available either in the context of so called statistically equivalent period
unit cell or through applications of micromechanical models depending
on the type of supplied microstructural information.

While three-dimensional estimates of overall elastic stiffnesses are
available for geometrically imperfect microstructures regardless of the
method used, the influence of porosity on the overall behavior has been
examined only in the two-dimensional format. Although it is encoura-
ging to see that both the Mori-Tanaka method and FEM simulations
performed on the SEPUC deliver comparable results, the fact that both
approaches rely on rather different quality of microstructural information
somewhat degrades the importance of geometrical imperfections and pro-
motes porosity as a key factor in achieving reliable predictions of the ove-
rall response. Incorporating porosity in three-dimensional calculations is
therefore highly desirable.

In connection to SEPUC based analyses the credibility of predictions
can be extended by introducing three-dimensional data obtained from
computer tomography [34]. More tedious approach takes advantage of
previously mentioned image analyzer LUCIA G. Here, the complex ge-
ometry of distinct types of voids is examined by scanning the specimen
surfaces during gradual grinding of the specimen cross-section. Simplified
geometries of actual voids would, however, be necessary to enable feasi-
ble numerical treatment particularly when preparing three-dimensional
“periodic” finite element meshes.

Even more restrictive idealization with respect to actual pore geo-
metry is expected with applications of the Mori-Tanaka method. On
the microscale (the level of yarns) it appears reasonable to adopt two-
dimensional solutions for irregular shaped voids presented in [18, 50]. On
the mesoscopic level, however, a family of equivalent ellipsoids will need
to be introduced. Moreover, to ensure overall symmetry of the Mori-
Tanaka predictions the homogenization procedure will be developed in
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a certain hierarchical manner as discussed, e.g. in [50, 39, 47]. A typical
sequence would lead to the solution of an auxiliary problem, in which a
solitary ellipsoidal inclusion is embedded into an unbounded matrix with
the properties found for a geometrically imperfect non-porous composite.
For plain weave textile composites the material symmetry of the equi-
valent homogeneous matrix would be at least orthotropic. While closed
form solutions for material systems with transversely-isotropic matrix
can be found in [42], no such solutions are available for an orthotropic
matrix with the principal material axes different from the axes of the
ellipsoid. A numerical evaluation of the Eshelby tensor will therefore be
required. For a generally anisotropic matrix this problem was discussed,
e.g. in [13].

Resolution of the problems outlined in the last two paragraphs still
requires further work. Some of the topics are under current investigation
within the scope of the CEZ MSM 6840770003 research project.
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