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     0. Outline of the dissertation. 

 

The dissertation is the account of my work on the connections between Shelah’s theory of 

proper forcing in set theory, and descriptive set theory. It turns out that in a suitably 

definable context the development of the theory of proper forcing is extremely smooth. 

Furthermore, the questions raised connect the formerly purely combinatorial forcing 

theory to such fields of mathematics as abstract analysis, geometric measure theory, 

potential theory, Borel equivalence relations, pcf theory and more. The dissertation is just 

a beginning of a development that has sadly been neglected for too long. 

 

The point of departure of the dissertation is that every suitably definable proper forcing is 

isomorphic to the factor algebra of Borel sets modulo a suitable sigma-ideal I. Three 

intertwining lines of investigation lead from there: 

 

1. Identify the sigma-ideals connected with the traditional proper forcing notions and 

determine their topological and descriptive properties. 

2. For sigma-ideals that occur in the various fields of mathematics decide whether 

the associated factor algebra is a proper notion of forcing, and what forcing 

properties it may have. 

3. See how operations on ideals and operations on forcings are connected. 

 

The dissertation presents significant progress in all three directions. Regarding the first 

item, it computes and investigates ideals associated with Silver forcing, Mathias forcing, 

and Laver forcing, as well as the more familiar cases such as the Sacks or Miller forcing. 

In the second direction, it shows that the ideals associated with Hausdorff measures, 

porosities and certain Borel equivalences generate proper forcings. After the dissertation 

was published I proved that all capacities in potential theory generate proper forcings as 

well. Finally, in the third direction it is shown that the countable support iteration of 

forcings is connected with transfinite Fubini powers of ideals and that there are canonical 

illfounded iterations of forcings. Later I showed that the side by side products are 

connected with certain Ramsey theoretic properties of ideals which in turn are implied by 

some forcing properties of the factor forcings. 

 

The dissertation concludes with several applications. It turns out that the theory 

developed in the first four chapters makes it possible to identify certain models of set 

theory which are canonical with respect to certain kinds of independence results. In other 

words, given just the syntactical form of the sentence one wishes to prove consistent with 

the axioms of set theory, in many cases there is a model of set theory in which the 

sentence must hold if it is not outright inconsistent. Moreover, these canonical models 

have long been known and used, except their “canonicity” seemed not to rise above the 

level of a heuristic. The dissertation offers a precise quantification of the phenomenon. 



1. Results 

 

1.1. Absoluteness Theorems. 

 

The first and still the most important results obtained by the method described in the 

thesis are absoluteness theorems which allow the mathematician to identify the “correct” 

Boolean algebras for whole classes of independence results. The independence results 

concern inequalities between cardinal invariants of the real line. Cardinal invariants were 

invented to discern between various Borel structures on the real line. Given Borel 

structures S, T would be assigned infinite cardinal numbers x(S),  x(T), and then 

inequalities of the form x(S)<x(T) would indicate a significant difference between the 

structures. However, under the assumption of the Continuum Hypothesis most of these 

cardinal invariants coincide and are equal to ℵℵℵℵ1. This means that sharp inequalities 

between invariants can be achieved only as consistency results. Soon after the discovery 

of forcing many consistency results of this kind appeared, and the field started to grow 

chaotically. The results in the thesis bring some measure of order to the field of cardinal 

invariants. In fact, it turns out that the comparison of cardinal invariants frequently 

necessarily brings us back to the projective properties of the Borel structures concerned, 

without encountering any new information from, say, combinatorics on uncountable 

cardinals. In such a way the thesis brings closure to some parts of the field, and at the 

same time indicates parts for which such a swift closure is not yet possible. 

 

Definition. A tame cardinal invariant is a cardinal number defined as the minimal size of 

a set A of reals with properties 

 

ϕϕϕϕ(A) and ∀∀∀∀ x∈∈∈∈ℜℜℜℜ ∃∃∃∃ y∈∈∈∈A  θθθθ(x, y) 

 

where the formula ϕϕϕϕ quantifies only over natural numbers and elements of the set A and 

the formula θθθθ quantifies only over real numbers and does not make reference to the set A.  

 

Most cardinal invariants used in mathematical practice today are tame, such as a, b, c, d, 

e… [2] Others, such as g, h are not tame, but they form a distinct minority. Comparing 

tame invariants with certain other invariants is made easy by the theorems contained in 

the thesis. 

 

Theorem. (ZFC+LC) Suppose that x is a tame invariant. If x<c holds in some forcing 

extension then it holds in the iterated Sacks extension. 

 

This theorem is a special case of Theorem 5.1.14 in the thesis. Recall that c denotes the 

size of the continuum. The statement of the theorem needs explanation.  

 

The theorem is proved under a suitable large cardinal assumption, indicated by LC; in the 

given case a proper class of measurable Woodin cardinals is a sufficient assumption. The 

thesis also contains a variation of the theorem provable without such assumptions. It uses 

a somewhat more technically defined class of invariants as compared to the tame 

invariants, which nevertheless contains all the tame invariants used in present day 



practice. The users of the theorem are unlikely to be disturbed by the presence of large 

cardinal assumptions. 

 

The iterated Sacks extension is a particular forcing extension, or perhaps a particular 

Boolean algebra, which has been studied for decades. It was understood on an intuitive 

level that it has properties similar to those described in the theorem, however the theorem 

still came as a surprise in its generality. The reason why Sacks forcing enters the scene is 

its close relationship to the quotient algebra of Borel subsets of the reals modulo the ideal 

of countable sets. 

 

  There are several important consequences of the theorem. First, it eliminates a search 

for a suitable Boolean algebra for a consistency result of the form x<c. Such a search is 

normally perhaps the most difficult part in proving a consistency result, but here that 

Boolean algebra is identified by the theorem. The proof of the theorem even gives a hint 

as to the methods of comparison of x and c in the extension. Second, it proves a weak 

mutual consistency result. If x, y are tame invariants and x<c, y<c can both be forced, 

they can be forced in conjunction—they both hold in the iterated Sacks extension. And 

finally, the theorem implies that if a tame cardinal x can be forced less than c, then it can 

be forced that x=ℵℵℵℵ1<c=ℵℵℵℵ2.  

 

Many versions of the theorem for invariants other than c (such as b, d, h…) can be found 

in Chapter 5 of the dissertation. 

 

 

 

1.2. Duality Theorems. 

 

 

Every σ-ideal I on a Polish space X has four cardinal invariants associated with it. 

cov(I)=the smallest number of sets in I necessary to cover the space X, non(I)=the 

smallest cardinality of an I-positive set, add(I)=the smallest size of a collection of I-

small sets whose union is not I-small anymore, and cof(I)=the smallest size of a basis of 

the sigma ideal I. Among these, cov and non, and add and cof are dual in a vague 

sense.Workers in the area have long used so-called duality heuristic which says roughly: 

if cov(I) is provably large then non(I) is provably small, similarly for other dual pairs. In 

fact every cardinal inequality concerning these invariants can be dualized, and the 

heuristic then says that an inequality is provable if and only if its dual form is provable. 

This is not a theorem and really it is false in general, but it still serves as a valuable tool 

in the field. The method introduced in the dissertation makes it possible to prove some 

limited versions of the duality heuristic. 

 

Theorem.  If I is a projectively defined sigma-ideal such that ZFC+LC proves cov(I)=c 

then ZFC+LC proves non(I)≤≤≤≤ℵℵℵℵ2. 

 

Similarly for non and cov, cof and add, and add and cof in place of cov and non. Again 

the theorem uses large cardinal assumptions denoted by LC in its statement, this time ωωωω1 



many Woodin cardinals suffice. There is a version of the theorem for a smaller class of 

sigma ideals that does not use the large cardinal assumptions. There are versions of the 

theorem with c and ℵℵℵℵ2 replaced by other cardinals, however it turns out that they are 

more complicated to obtain and state.  

 

   

1.3. Interpolation theorems 

 

 

The interpolation theorems in logic usually state something to the following effect: if ϕϕϕϕ, 

ψψψψ are formulas and ϕϕϕϕ→→→→ψψψψ is provable, then there is a simple formula θθθθ such that ϕϕϕϕ→→→→θθθθ and 

θθθθ→→→→ψψψψ are both provable. It turns out that the method contained in the dissertation can be 

used to identify a number of interpolation theorems for set theory. 

 

Theorem. Suppose that x is a tame cardinal invariant. If ZFC+LC proves that x=ℵℵℵℵ1 

implies the existence of a Lusin set, then ZFC+LC proves that x=ℵℵℵℵ1  implies 

cof(meager)=ℵℵℵℵ1. 

 

Here a Lusin set is an uncountable set of reals that has countable intersection with every 

meager set. It is easy to prove that cof(meager)=ℵℵℵℵ1 implies the existence of a Lusin set. 

The theorem shows that this is a critical provable implication of this form: every other 

provable implication x=ℵℵℵℵ1→→→→ Lusin set can be factored into two provable implications  

x=ℵℵℵℵ1→→→→ cof(meager)=ℵℵℵℵ1→→→→ Lusin set. Again the large cardinal hypotheses (this time, ωωωω1 

Woodin cardinals) can be eliminated for a class of invariants a little bit more restrictive 

than the tame invariants. 

 

 

2. Methods 

 

 

To a certain degree, the methods used in the dissertation as well as in the papers 

immediately preceding or following it are more important and interesting than the results 

themselves. It is a mixture of methods of descriptive set theory, determinacy, forcing, 

abstract analysis, large cardinals, pcf theory and other fields. The main idea is to link the 

descriptive and topological properties of σ-ideals with the forcing properties of the 

related quotient algebra. There are three different issues facing the theory. 

 

 

     2.1. Examples 

 

 

The basic stepping stone is of course the identification of many σ-ideals for which the 

quotient algebra is a proper [39] and interesting notion of forcing, and the correspondence 

of traditional combinatorially obtained posets with the quotient algebra. A rich structure 

appears here. The posets in the left hand column are  in the forcing sense equivalent  to 

the quotient algebras of ideals in the right hand column: 



 

Sacks forcing Countable sets 

Miller forcing σ-compact subsets of the Baire space 

Laver forcing Non-dominating subsets of the Baire space 

Cohen forcing Meager sets 

Solovay forcing Lebesgue null sets 

Mathias forcing Sets nowhere dense in P(ω) mod fin 

Silver forcing Sets of countable Borel chromatic number 

in a certain graph 

 

 

Moreover, it turns out that quotient algebras of σ-ideals obtained as σ-porous ideals for 

various notions of porosity, ideals of σ-finite Hausdorff measure sets, ideals generated by 

closed sets, and ideals of null sets associated with various capacities and submeasures are 

all proper notions of forcing. At this point, the verification of properness still proceeds 

more or less on a case by case basis, since there are natural ideals for which the quotient 

algebra is not proper and they do not seem to be easy to identify. There are very many σ-

ideals for which the properness status of the quotient algebra has not been cleared. 

 

 

    2.2. Topology-forcing connection 

 

It turns out that many traditional properties of forcing notions have a natural topological 

restatement in the context of the quotient algebras, making the terminology of the field 

much more compact, exact and readily understandable. A simple example: 

 

Theorem. Suppose that I is a σ-ideal on a Polish space such that the quotient forcing is 

proper. The following are equivalent: 

 

• The poset PI is bounding 

• Compact sets are dense (every Borel I-positive set has a compact positive subset) 

and the continuous reading of names (every Borel function on a positive Borel 

domain has a continuous restriction with a positive Borel domain). 

 

 

The bounding property of partial orders has long been used in various constructions. 

These constructions invariably used posets consisting of finitely branching trees, which is 

now fully understandable in view of the theorem. The continuous reading of names used 

to be just a forcing slang for a certain trick in proving properness, which in the context of 

quotient algebras has the above exact and natural reformulation. 

 

 

   2.3. Operations on ideals vs. operations on forcings 

 

The connection between operations on ideals and forcings turns out to be very natural and 

it is the most important object of study in the dissertation. 



 

The most natural operation on proper forcings is the countable support iteration. It is 

closely connected to the transfinite Fubini product of ideals. This notion of product 

naturally extends the Fubini product and the dissertation is apparently the first publication 

in which it appears. Let me avoid the simple formal definition and just mention that given 

an ideal I on a Polish space X and a countable ordinal ββββ, the ββββ-th Fubini power of I is an 

ideal Iββββ on the space X
ββββ. For finite values of ββββ this is the same as the usual iterated Fubini 

power. 

 

Theorem. (ZFC+LC) Suppose that I is a projectively definable σ-ideal on a Polish space 

such that it is almost full and the forcing PI is proper. For every countable ordinal ββββ the 

countable support iteration of the poset PI of length ββββ is in forcing sense equivalent to PJ, 

where J=Iββββ. 

 

The large cardinal hypothesis LC (in this case ωωωω1 Woodin cardinals) is necessary already 

for ββββ=2 and very simple ideal I. This is the main reason why large cardinal assumptions 

are an important tool in the dissertation. The large cardinal hypotheses can be eliminated 

for ΠΠΠΠ1
1
 on ΣΣΣΣ1

1
 ideals. Note that for ideals without a suitably absolute definition the whole 

idea of iteration does not make much sense. The theorem can be extended to give a 

similar information for iterations of several different forcings. 

 

Another natural operation on partial orders is the side-by-side product. Several ideals 

resulting from a product of partial orders were computed in the dissertation and a general 

theory was exhibited in a later paper. Given a ideals I, J on  Polish spaces X, Y, let I××××J 

be the sigma ideal on X××××Y generated by Borel sets without a subset of the form B××××C 

where B and C are Borel I or J-positive sets respectively. A similar definition can give a 

side by side product of countably infinitely many various ideals. The main problem here 

is that I××××J is in many cases trivial. 

 

Theorem.  (ZFC+LC) Suppose that I, J are projectively definable ideals such that the 

quotient posets are proper and preserve cof(meager). Then I××××J is a nontrivial ideal, its 

quotient forcing is proper, preserves cof(meager) and is in the forcing sense equivalent to 

PI×××× PJ. 

 

A similar theorem holds for infinite side-by-side products. The large cardinal hypothesis 

here is again that of ωωωω! Woodin cardinals. Preservation of cof(meager) means that every 

meager set in the extension is a subset of a meager set coded in the ground model. Note 

that the theorem has a Ramsey-theoretic content: in the given case, if the plane is 

partitioned into countably many Borel pieces then one of them must contain a rectangle 

with Borel positive sides. Since it contains a determinacy argument, the proof of the 

theorem works for definable ideals only.  

 

Several other operations on ideals and posets are identified in the dissertation. There is 

the illfounded iteration of definable partial orders preserving non(meager), and towers of 

ideals. It seems that other natural operations will be found soon. 
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