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Mı́sto a datum: Praha, 2012



Contents

Resumé 2
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Resumé

This doctoral dissertation presents scientific results which have been published in papers of in-
ternational journals [D1]–[D12], in chapters of international books [D13]–[D15], and in the author’s
monographs published at an international publisher [D16]–[D18]. Strictly speaking, the scientific
results which are published in [D1]–[D15] along with next development of these results are presented
in [D16]–[D18]. This doctoral dissertation thus presents the most important results of these three
monographs [D16]–[D18]. These sole-authored international works [D1]–[D18] deal with the analytical
modelling of thermal stresses and thermal-stress induced phenomena in multi-component materials,
i.e. in two- and three-component materials which are defined in Sec. 1.2. The thermal stresses
and thermal-stress induced phenomena are thus analytically determined in each component of these
multi-component materials. With regard to the analytical modelling, these real multi-component
materials are replaced by two- and three-component model systems, i.e. multi-particle-matrix and
multi-particle-envelope-matrix systems, respectively (see Fig. 1).

The analytical determination of a thermal stress-strain state is based on a cell model which consid-
ers a cubic cell (see Fig. 1). The cell model is usually used in case of the analytical and computational
modelling of phenomena in periodic model systems [19]–[27]. As presented in [28], the replacing of
the real multi-component materials with finite dimensions by model systems with infinite dimensions
is considered for mathematical simplicity of analytical solutions which are assumed to exhibit suffi-
cient accuracy due to relatively small material components in comparison with macroscopic material
samples, macroscopic structural elements, etc.

The thermal stresses which originate below relaxation temperature (see Sec. 2.5) during a cooling
process are a consequence of the difference in dimensions of the components. This difference is a con-
sequence of different thermal expansion coefficients and/or a consequence of the phase-transformation
induced strain. This coefficient and strain are included in the coefficient βq for the spherical particle
(q= p), the spherical envelope (q= e) and the cell matrix (q=m) (see Eqs. (9)–(11)). Due to a range
of this brochure, this strain is determined in the doctoral dissertation.

The analytical modelling results from fundamental equations of solid continuum mechanics which
are represented by the Hooke’s law for an anisotropic and isotropic continuum (see Sec. 2.3), and by
the Cauchy’s, compatibility and equilibrium equations which are determined by the spherical coor-
dinates (r, ϕ, ν) (see Fig. 2). The analytical models of the thermal stresses are determined for these
model systems which consists of either anisotropic, or isotropic, or anisotropic and isotropic compo-
nents (see Chaps. 3, 4, Sec. 4.3). The thermal stress-strain state in each component of the model
systems is determined by several mutually different solutions which fulfil the boundary conditions
which are determined in Sec. 3.3. In case of the cell matrix, mandatory and additional boundary
conditions are determined. Due to these different solutions, a principle of minimum total potential
energy of an elastic solid body [29] is then required to be considered (see Sec. 2.4).

Analytical models of thermal-stress induced phenomena are also determined. These phenom-
ena include the crack formation (see Sec. 5.1), the energy barrier (see Sec. 5.2), the micro- and
macro-strengthening (see Sec. 5.3), and the analytical-computational and analytical-computational-
experimental methods of the lifetime prediction (see Sec. 5.4).

In addition to experimental methods [30]–[32], crack formation is also investigated analytically
and/or computationally [33]–[38]. This investigation is usually applied to an existing crack in a model
system. A shape of such existing crack is required to be mathematically defined, e.g. a penny-shaped
crack. Strictly speaking, this mathematically defined crack exists in a model system before the loading
of the model system. Such analytical and/or computational determination is based on e.g. the finite
and boundary element methods, the Green’s functions, J -integrals, semi-smooth Newton methods,
singular integral equations which result from the Lekhnitskii’s complex variable formulation, weight
functions, mean-field theory, Mori-Tanaka’s homogenization, Stroh formalism [35]–[38].

As presented in Sec. 5.1, the crack formation in the multi-particle-matrix system includes crack
initiation which is followed by crack propagation. With regard to the crack initiation investigated in
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this doctoral dissertation, no mathematically defined crack is present in this model system before the
thermal-stress loading. As mentioned above, this is in contrast to the crack formation investigation
in [33]–[38] which is based on a concept of a crack existing in a model system before loading of the
model system. The crack formation analysis in Sec. 5.1 is based on the comparison of energy which
is accumulated in the cubic cell with energy for the creation of a new surface (i.e. a surface of the
crack). This comparison is also used e.g. in [39]–[41]. The crack formation analysis considers a curve
integral of energy density along a curve in the cubic cell (see Eqs. (50), (51)).

The condition (see Eq. (47)) which defines a limit state with respect to the crack initiation in
the cracking plane xixj (i, j = 1,2,3; i 6= j; see Fig. 4c) in the spherical particle or cell matrix is

determined. The limit state is thus defined by the critical particle radius R
(ij)
1cq related to the crack

initiation in the spherical particle (q= p) or in the cell matrix (q=m). With regard to the crack

propagation at R1 > R
(ij)
1cq , the condition for the determination of a position of the crack tip in

xixj (see Fig. 4a) in components of the multi-particle-matrix system is determined (see Eq. (48)).
Formulae which define the crack shape in the plane xijxk (i, j, k = 1,2,3; i 6= j 6= k; see Fig. 4c) which
is perpendicular to the cracking plane xixj in components of the multi-particle-matrix system are also
determined (see Eqs. (44)–(46)). These crack propagation results are valid for ceramic components
which are characterized by a high-speed crack propagation. In contrast to the crack propagation
results, the determination of the limit state is applicable disregarding a ’character’ of components of
the multi-particle-matrix system (ceramic=brittle, elastic, elastoplastic components). Additionally,
the crack formation analysis (see Method 2, p. 24) explains paradoxical behaviour of the cracking
which is experimentally observed in a real two-component material [39]–[41].

The energy barrier represents a surface integral of the thermal-stress induced elastic energy den-
sity w over a surface in the cubic cell (see Eq. (54)). In addition to experimental methods [42]–[44],
strengthening of the multi-component materials is also investigated analytically and/or computa-
tionally. Such analytical and/or computational determination is based on e.g. the finite element
methods, Orowan and modified Oldroyd models, a simulation of dislocation dynamics [45]–[50]. As
presented in Sec. 5.3, the micro- and macro-strengthening (see Eq. (58)), which is defined - within
this doctoral dissertation - as thermal-stress resistance against mechanical loading, is also based on
a surface integral of the thermal-stress induced elastic energy density wi (i= 1,2,3) over a surface
in the cubic cell (see Eq. (56)). In this case, wi represents such elastic energy density which is in-
duced by the thermal stress σi which act along the axis xi (see Fig. 2). The macro-strengthening
represents a mean value of the micro-strengthening in the cubic cell. The energy barrier along with
micro- and macro-strengthening are determined for both model systems. This brochure presents the
determination of this barrier and strengthening for the multi-particle-matrix system only.

The analytical modelling of the lifetime prediction methods is based on a transformation of
the ’resistive’ effect of the thermal stresses to the ’contributory’ effect with respect to mechani-
cal loading. This transformation results in the analytical determination of critical microstructural
parameters (a radius of grains; thickness of an envelope which is segregated on a surface of the
grains). The lifetime prediction methods also consider computational results which are obtained by
a computational simulation of the microstructural parameters during a time-temperature-dependent
development of microstructure (analytical-computational method), and also consider experimental
results (analytical-computational-experimental method).

Finally, the analytical models of the crack formation, of the energy barrier and of the micro- and
macro-strengthening along with the methods of lifetime prediction exhibit a general validity. These
analytical models and these lifetime prediction methods are valid for the thermal-stress induced
elastic energy density as well as for energy density which is induced by any stresses acting in the
model systems (see Fig. 1). In case of the lifetime prediction methods, conditions which are required
with respect to this general validity are presented (see page 29). Due to a range of this brochure,
The detailed analysis concerning this general validity along with illustrative examples of applications
of the analytical models of these phenomena to real engineering materials (superconductive and
structural ceramics, a creep-resistant steel) are presented in the doctoral dissertation.
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1 Types of multi-component materials. Model systems and cell model

1.1 Types of multi-component materials. The analytical models of the thermal stresses and the
related phenomena (see Chaps. 3–5) are applicable to real multi-component materials which consist
of two or three components. The following two types of the two-component materials with finite
dimensions consist of

1. precipitates and grains, where the precipitates are distributed in the grains,

2. two types of grains. Crystal lattices of grains of these two types are mutually different.

The following two types of the three-component materials with finite dimensions consist of

3. precipitates, grains and a continuous component on a surface of each of the precipitates, where
the precipitates are distributed in the grains,

4. grains with a continuous component on their surface and grains without the continuous com-
ponent on their surface. Crystal lattices of grains of these two types (i.e. with and without the
continuous component) are mutually identical or mutually different.

1.2 Model systems and cell model. With regard to analytical modelling of the thermal stresses,
the two- and three-component materials with finite dimensions, defined in Sec. 1.1, are replaced by
multi-particle-matrix and multi-particle-envelope-matrix systems with infinite dimensions (see Fig.
1), respectively. These model systems consist of periodically distributed spherical particles without
(see Fig. 1a) and with (see Fig. 1b) a spherical envelope on a surface of each of the spherical particle
surfaces. These model systems are characterized by the inter-particle distance d, the particle radius
R1, the envelope radii R1, R2, where R1 < R2.

(a) (b)

Figure 1: (a) The multi-particle-
matrix system and (b) multi-
particle-envelope-matrix system as
model systems which are applica-
ble to the two- and three-component
materials defined in Sec. 1.1, re-
spectively. The imaginary cubic
cells with the Cartesian system
(Ox1x2x3) in the cell centre and with
a central spherical particle (with
the radius R1) without or with the
spherical envelope (with the radii
R1, R2) on the particle surface. The
cubic cell dimension d along the
axes x1, x2, x3 is identical to inter-
particle distance.

To derive the thermal stresses acting in these model systems, the infinite matrix is imaginarily
divided into identical cubic cells with the dimension d along each of the axes x1, x2, x3 of the
Cartesian system (Ox1x2x3). Each cubic cells contains a central spherical particle without or with
the spherical envelope. The beginning O of the Cartesian system is identical with the particle centre
as well as with the centre of the cubic cell. The thermal stresses are thus investigated within the
cubic cell, i.e. in the spherical particle, spherical envelope and cell matrix. The cubic cell represents
a part of the infinite matrix, and this part is related to one spherical particle. Due to infinity of the
matrix, formulae for the thermal stresses which are determined for a certain cubic cell are also valid
for any cubic cell of the infinite matrix.
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The model systems shown in Fig. 1 are depicted in the plane x1x2. Due to the matrix infinity
regarding each of the axes x1, x2, x3, the same figure is also considered for the planes x1x3 and x2x3.
As analysed in Sec. 3.3, the surface of the cubic cell represents a set of points for which one of the
mandatory boundary conditions (see Eq. (34)) as well as the additional boundary conditions (see
Eqs. (36), (37)) for the cell matrix are determined.

Let the model systems have a finite matrix. The analytical modelling of the thermal stresses
in such model systems is required to consider a shape and dimensions of the finite matrix as well
as a position of each cell in the finite matrix. Boundary conditions related to the surface of the
cubic cell are then required to be separately determined for each cell. On the one hand, let the
boundary conditions for the surface of the cubic cell in the model systems with a finite matrix
be defined. However, an application of such analytical model to real two- and three-component
materials results in numerical dependences of the thermal stresses and of the related phenomena
(see Chaps. 3–5) on characteristics of the model systems (see Sec. 1.3). On the other hand, such
application would be probably time-consuming. Additionally, as presented in [28], the case when
an infinite matrix is considered within analytical modelling of phenomena in real multi-component
materials with finite dimensions is of particular interest for the mathematical simplicity of analytical
solutions. As presented in [28], such analytical solutions are assumed to exhibit sufficient accuracy
due to the size of material components (e.g. precipitates, envelopes) which is relatively small in
comparison with the size of macroscopic material samples, macroscopic structural elements, etc.

1.3 Characteristics of the model systems, i.e. R1, R2, d, the thickness t = R2 − R1 > 0
of the spherical envelope and the particle volume fraction v ∈ (0, vmax〉, represent microstructural
characteristics of the real two- and three-component materials. In case of the multi-particle-matrix
and multi-particle-envelope-matrix systems, we get vmax = π/6 and vmax = (π/6)× [1 − t/ (R1 + t)]3,
respectively. These characteristics are related to the temperature T ∈ 〈Tf , Tr〉, where Tf is final
temperature of a cooling process, and the relaxation temperature Tr is analysed in Sec. 2.5. In case
of the numerical determination of the thermal stresses in a real two- or three-component material,
the temperature dependences R1 = R1 (T ), t = t (T ), d = d (T ) are required to be determined for
the temperature interval T ∈ 〈Tf , Tr〉 by a suitable experimental-computational method.

1.4 Multi-component materials versus model systems. Relationship between components of
the multi-component materials defined in Items 1–4, Sec. 1.1 and components of the model systems
defined (see Fig. 1)are as follows.

Two-component materials. The precipitates and grains of the two-component material defined in
Item 1, Sec. 1.1 correspond to the spherical particles and infinite matrix of the multi-particle-matrix
system, respectively.

Let the grains A and B of the two-component material defined in Item 2, Sec. 1.1 be characterized
by the volume fractions vA and vB = 1 − vA, respectively. If vA > vmax = π/6 (see Sec. 1.3), then
the grains A are considered to represent the infinite matrix of the multi-particle-matrix system. If
vB > vmax = π/6, then the grains B are considered to represent the infinite matrix of the multi-
particle-matrix system.

Let vA < vmax and vB < vmax be valid. Let WcAB = WpA +WmB (see Sec. 2.4) represent thermal-
stress induced elastic energy of the cubic cell of such multi-particle-matrix system when the grains
A and B are considered to represent the spherical particle and cell matrix within the analytical
modelling of the thermal stresses, respectively.

Let WcBA = WpB + WmA (see Sec. 2.4) represent thermal-stress induced elastic energy of the
cubic cell of such multi-particle-matrix system when the grains B and A are considered to represent
the spherical particle and cell matrix, respectively.

If WcAB < WcBA, then the grains A and B of this real two-component material are considered
to represent the spherical particle and cell matrix, respectively. If WcAB > WcBA, then the grains B
and A of this real two-component material are considered to represent the spherical particle and cell
matrix, respectively.
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Three-component materials. The precipitates, continuous component and grains of the three-
component material defined in Item 3, Sec. 1.1 correspond to the spherical particles, spherical enve-
lope and infinite matrix of the multi-particle-envelope-matrix system, respectively.

With regard to Item 4, Sec. 1.1, the continuous component, the grains with the continuous com-
ponent and the grains without the continuous component of the correspond to the spherical envelope,
spherical particle and infinite matrix of the multi-particle-envelope-matrix system, respectively.

2 Selected topics on solid continuum mechanics

2.1 Coordinate system and intervals of coordinates. Thermal stresses are investigated at the
arbitrary point P of a solid continuum along the axes x′

1, x′
2, x′

3 of the Cartesian system (Px′
1x

′
2x

′
3) (see

Fig. 2). A position of the arbitrary point P regarding the Cartesian system (Ox1x2x3) is determined
by the spherical coordinates (r, ϕ, ν), where O is a centre of the spherical particle (see Fig. 1). The
spherical coordinates (r, ϕ, ν) and the infinitesimal spherical cap1 in Fig. 2 are considered due to the
spherical shape of the particles and envelopes of the model systems (see Fig. 1).

Figure 2: The arbitrary point P with a position determined
by the spherical coordinates (r, ϕ, ν) regarding the Cartesian
system (Ox1x2x3), where O is a centre of the spherical par-
ticle (see Fig. 1), and r = |OP |. The axes x′

1 = xr and
x′

2 = xϕ, x′
3 = xν thus represent radial and tangential direc-

tions, respectively, where xϕ ‖ x1x2. The infinitesimal spher-
ical cap at the point P with the surfaces Sr = A1B1C1D1

and Sr+dr = A2B2C2D2 at the radii r =
∣

∣OP
∣

∣ and r + dr,
respectively. The axis x′

1 represents a normal of Sr and
Sr+dr. Dimensions of the infinitesimal spherical cap are
as follows: |A1A2| = |B1B2| = |C1C2| = |D1D2| = dr,
|A1D1| = |B1C1| = r × dϕ, |A1B1| = |C1D1| = r × dν,
|A2D2| = |B2C2| = (r + dr) × dϕ, |A2B2| = |C2D2| =
(r + dr) × dν.

The thermal stresses are sufficient to be investigated within one eighth of the cubic cell, i.e. for ϕ ∈
〈0, π/2〉 and ν ∈ 〈0, π/2〉. This is a consequence of symmetry of the model systems. This symmetry
results from the matrix infinity and from the periodical distribution of the spherical particles and
spherical envelopes. The intervals ϕ ∈ 〈0, π/2〉 and ν ∈ 〈0, π/2〉 are also considered due to a
homogeneous temperature change during the cooling process. The homogeneous temperature change
which is considered in this doctoral dissertation is then characterized by the condition ∂T/∂r =
∂T/∂ϕ = ∂T/∂ν = 0, where T is temperature. The interval r ∈ 〈0, R1〉 is related to the spherical
particle of the model systems (see Fig. 1). The interval r ∈ 〈R1, R2〉 is related to the spherical
envelope of the multi-particle-envelope-matrix system. The intervals r ∈ 〈R1, rc〉 and r ∈ 〈R2, rc〉 are
related to the cell matrix of the multi-particle-matrix and multi-particle-envelope-matrix systems,
respectively. The integral boundary rc represents a distance along a radial direction (i.e. along the
axis x′

1 = xr) from the point O to a point on a surface of the cubic cell, where rc is derived as

rc =
R1 ×

√

1 + c2
ϕ

2 (sin ν ′ + cϕ cos ν ′)

(

4π

3v

)1/3

for ν ′ ∈ 〈0, ν∗〉 ; ν ′ = ν∗ − ν,

rc =
R1

2cϕ sin ν

(

4π

3v

)1/3

for ν ∈
〈

ν∗,
π

2

〉

,

ν∗ = arctan

(

1

cϕ

)

; cϕ = cos ϕ for ϕ ∈
〈

0,
π

4

〉

; cϕ = sin ϕ for ϕ ∈
〈π

4
,
π

2

〉

. (1)

1With regard to x′

1 = xr, x′

2 = xϕ, x′

3 = xν (see Fig. 2), the conventional subscripts r, ϕ, ν in a connection with the
spherical coordinates (r, ϕ, ν) are replaced by the subscripts 1, 2, 3, respectively, due to the mathematical techniques
in Sec. 3.1 (see e.g. Eqs. (16), (39)).
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2.2 Displacement of the infinitesimal spherical cap. Thermal-stress induced radial dis-
placement. Let the multi-particle-matrix system be considered (see Fig. 1a). The thermal stresses
in this model system originate as a consequence of the condition βp 6= βm. A detailed analysis of
the coefficient βq (see Eqs. (9)–(12)) is presented in Sec. 2.5, where the subscript q= p and q=m

is related to the spherical particle and cell matrix, respectively. The thermal stresses originate at
the temperature T ∈ 〈Tf , Tr〉, where Tf is final temperature of a cooling process, and the relaxation
temperature Tr is analysed in Sec. 2.5. As presented in Sec. 2.1, this cooling process is characterized
by a homogeneous temperature change. The homogeneous temperature change which is considered
in this doctoral dissertation is then characterized by the condition ∂T/∂r = ∂T/∂ϕ = ∂T/∂ν = 0.

If T ∈ 〈Tf , Tr〉 and βm − βp > 0, then the cell matrix is pushed by the spherical particle, and the
spherical particle is pushed by the cell matrix. If T ∈ 〈Tf , Tr〉 and βm − βp < 0, then the cell matrix
is pulled by the spherical particle, and the spherical particle is pulled by the cell matrix.

An analysis of the pulling or pushing, i.e. an analysis of displacement of the infinitesimal spherical
cap, is as follows. As presented in Sec. 2.1, the multi-particle-matrix system is symmetric. Due to
this symmetry, the pulling or pushing of an arbitrary point at the particle-matrix boundary is realized
along a normal to this surface (i.e. to the particle-matrix boundary) at this arbitrary point.

Let P (see Fig. 2) be such arbitrary point at the particle-matrix boundary, thus for r = R1. The
point P as well as the infinitesimal spherical cap at the point P thus exhibit a displacement along
a normal to the surfaces Sr and Sr+dr of the spherical the infinitesimal spherical cap (see Fig. 2).
The normal to the surfaces Sr, Sr+dr is represented by the axis x′

1 which defines the radial direction
regarding the Cartesian system (Ox1x2x3) (see Fig. 2). The infinitesimal spherical cap in the point P
at the particle-matrix boundary exhibits a displacement along the axis x′

1, i.e. a radial displacement.
The condition βp 6= βm is a reason of the radial stress p1 acting at the particle-matrix boundary

along the axis x′
1. A condition for the determination of p1 = p1 (ϕ, ν) is derived in Sec. 2.6 (see

Eq. (13)). The radial stress p1 is a reason of the fact that this analysis concerning the radial
displacement of the infinitesimal spherical cap in the point P at the particle-matrix boundary (i.e.
for r = R1) is also valid for each point of the axis x′

1 (i.e. for r ∈ 〈0, rc〉).
The same is also valid for the multi-particle-envelope-matrix system. In this case, p1 and p2

acting at the particle-envelope and matrix-envelope boundaries are a consequence of the conditions
βp 6= βe and βe 6= βm, where βe is a thermal expansion coefficient of the spherical envelope (see
Eqs. (9)–(12)). The radial stresses p1 = p1 (ϕ, ν) and p2 = p2 (ϕ, ν) are determined by Eqs. (14) and
(15), respectively,

The infinitesimal spherical cap (see Fig. 2) in the arbitrary point P (see Fig. 2) with a position
described by the spherical coordinates (r, ϕ, ν) exhibits the radial displacement u′

1 = ur only,
along the axis x′

1 (see Fig. 2).
Additionally, the following analysis concerning the radial displacement u′

1 = ur is required to be
considered. This analysis is based on a concept of imaginary separation which is also considered
within mathematical procedures which are used for the determination of the Eshelby’s model [51].

Let the multi-particle-matrix system be considered. Let the spherical particles and infinite matrix
be imaginarily separated, and then spherical hollows are periodically distributed in the infinite matrix.

Let T ∈ 〈Tf , Tr〉 represent temperature of the separated spherical particles and of the infinite
matrix with the spherical hollows. If the temperature T increases or decreases within the interval
〈Tf , Tr〉, then the components which are imaginarily separated expand or contract, respectively.
The expansion and contraction result in displacements of points in the components. Due to the
imaginary separation, these displacements result from the temperature change, and not from the
difference βm − βp 6= 0 (see Eqs. (9)–(12)).

Let the spherical particles be embedded in the infinite matrix. Let ∆T = T − Tr 6= 0 represent
the temperature change. Let the condition βp = βm be considered. Due to βp = βm, the thermal
stresses do not originate in the multi-particle-matrix system, and the infinitesimal spherical cap is
thus shifted due to the temperature change.

Let R1p = R1p (T ) and R1m = R1m (T ) represent temperature-dependent functions of radii of
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these separated spherical particle and the spherical hollows, respectively. Due to T < Tr, we get
R1q (T ) < R1q (Tr) (q= p,m), where R1q (Tr) = R1Tr

. The same, i.e. d (T ) < d (Tr), is also valid for
the temperature-dependent function d = d (T ) of the inter-particle distance d.

Due to βq = βq (ϕ, ν) (see Eqs. (9)–(12)), we get R1q = R1q (ϕ, ν, T ). Consequently, R1p =
R1p (ϕ, ν, T ) is a distance from the particle centre to a point on a surface of the separated particle
along the axis x′

1 which represents the radial direction defined by the angles ϕ, ν. Similarly, R1m =
R1m (ϕ, ν, T ) is a distance along x′

1 from a centre of the hollow to a point on a surface of the hollow.
If βp < βm, then we get R1p (ϕ, ν, T ) > R1m (ϕ, ν, T ). Let the distance R1p be changed to R1 for

each value of the variables ϕ, ν ∈ 〈0, π/2〉, where R1 < R1p. The change R1p (ϕ, ν, T ) → R1 is caused
by the radial stress p1 = p1 (ϕ, ν, T ) which acts, along the axis x′

1, on a surface of the separated
particle. Due to βp < βm, the radial stress p1 is compressive regarding the surface of the separated
particle. Additionally,

[

u′
1p (ϕ, ν, T )

]

r=R1p
= R1 −R1p represents a thermal-stress induced radial

displacement on a surface of the separated particle (i.e. for r = R1p) at a point defined by the
coordinates ϕ, ν ∈ 〈0, π/2〉. The radial displacement

(

u′
1p

)

r=R1p
along the axis x′

1 = xr (see Fig. 2) is

induced by the radial stress p1.
The separated particle can be put into the hollow provided that the distance R1m is also changed

to R1 for each value of the variables ϕ, ν ∈ 〈0, π/2〉, where R1 > R1m. The change R1m (ϕ, ν, T ) →
R1 (ϕ, ν, T ) is also caused by the radial stress p1 = p1 (ϕ, ν, T ) which acts on a surface of the hollow
in the matrix. Due to βp < βm, the radial stress p1 is also compressive regarding the surface of the
hollow. Additionally, [u′

1m (ϕ, ν, T )]r=R1m
= R1 −R1m represents a thermal-stress induced radial

displacement on a surface of the hollow (i.e. for r = R1m) at a point defined by the coordinates
ϕ, ν ∈ 〈0, π/2〉. The radial displacement (u′

1m)r=R1m
along the axis x′

1 = xr (see Fig. 2) is also
induced by the radial stress p1.

After the embedding of the separated particle with the radius R1p in the hollow with the radius
R1m, a surface of the particle with the radius R1 is pushed by a surface of the matrix, where
R1p > R1 > R1m. Similarly, a surface of the matrix is pushed by a surface of the particle. The same
is also valid in case of the pulling for βp > βm. This analysis of the pushing or pulling which considers
a concept of the imaginarily separated components is also valid for the multi-particle-envelope-matrix
system.

2.3 Fundamental equations of solid continuum mechanics.
Cauchy’s equations. The Cauchy’s equations which represent geometric equations define relation-

ships between displacements and strains of an infinitesimal part of a solid continuum. In case of
the infinitesimal spherical cap at the arbitrary point P (see Fig. 2), the relationships between the
radial displacement u′

1 = ur along the axis x′
1 = xr and the radial strain ε′11 = εr along x′

1 = xr, the
tangential strain ε′22 = εϕ along x′

2 = xϕ, the tangential strain ε′33 = εν along x′
3 = xν , the shear

strains ε′12 = σrϕ, ε13 = σrν are derived as

ε′11 =
∂u′

1

∂r
, ε′22 = ε′33 =

u′
1

r
, ε′12 =

1

r

∂u′
1

∂ϕ
, ε′13 =

1

r

∂u′
1

∂ν
. (2)

With regard to the analysis in Sec. 2.2, we get the shear strain ε′23 = ε′ϕν ∝ [(∂u′
2/∂ν) + (∂u′

3/∂ϕ)] =
0 due to u′

2 = uϕ = 0, u′
3 = uν = 0, where u′

2 = uϕ and u′
3 = uν represent displacements of the

infinitesimal spherical cap along x′
2 and x′

3, respectively, i.e. along tangential directions.
Compatibility equations. Solid continuum mechanics considers such principle that a system which

is continuous before deformation is required to exhibit this continuity after deformation as well,
i.e. strains are required to be mutually compatible [52,53]. The compatibility equations for the
infinitesimal spherical cap at the arbitrary point P (see Fig. 2) have the forms

ε′11−ε′22−r
∂ε′22
∂r

= 0,
∂ε′11
∂ϕ

−ε′12−r
∂ε12

∂r
= 0,

∂ε′11
∂ν

−ε′13−r
∂ε′13
∂r

= 0,
∂ε′22
∂ϕ

−ε′12 = 0,
∂ε′22
∂ν

−ε′13 = 0.

(3)
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Equilibrium equations. Solid continuum mechanics also considers a principle of the equilibrium
of forces which act within a solid continuum, strictly speaking, within on sides an infinitesimal part
of the solid continuum. In case of the infinitesimal spherical cap, the equilibrium equations of the
forces which act (along x′

1, x′
2, x′

3) on sides of the infinitesimal spherical cap at the arbitrary point
P (see Fig. 2) are derived as

2σ′
11−σ′

22−σ′
33+r

∂σ′
11

∂r
+

∂σ′
12

∂ϕ
+

∂σ′
13

∂ν
= 0,

∂σ′
22

∂ϕ
+3σ′

12+r
∂σ′

12

∂r
= 0,

∂σ′
33

∂ν
+3σ′

13+r
∂σ′

13

∂r
= 0. (4)

As analysed in Sec. 2.2, the infinitesimal spherical cap exhibits the thermal-stress induced radial
displacement u′

1 along the axis x′
1. This radial displacement is caused by the radial stress p1 acting

at the particle-matrix and particle-envelope boundary as well as by the radial stress p2 acting at the
matrix-envelope boundary. Due to these radial stresses and radial displacement, we get σ′

23 = σϕν =
0, where σ′

23 is a shear stress which is determined in the Cartesian system (Px′
1x

′
2x

′
3) (see Fig. 2).

Hooke’s law. With regard to σ′
23 = 0, the Hooke’s law for an anisotropic continuum is derived

as [54]

ε′11 = s′11σ
′
11 + s′12σ

′
22 + s′13σ

′
33 + s′15σ

′
13 + s′16σ

′
12, ε′22 = s′12σ

′
11 + s′22σ

′
22 + s′23σ

′
33 + s′25σ

′
13 + s′26σ

′
12,

ε′33 = s′13σ
′
11 + s′23σ

′
22 + s′33σ

′
33 + s′35σ

′
13 + s′36σ

′
12, ε′23 = s′14σ

′
11 + s′24σ

′
22 + s′34σ

′
33 + s′45σ

′
13 + s′46σ

′
12,

ε′13 = s′15σ
′
11 + s′25σ

′
22 + s′35σ

′
33 + s′55σ

′
13 + s′56σ

′
12, ε′12 = s′16σ

′
11 + s′26σ

′
22 + s′36σ

′
33 + s′56σ

′
13 + s′66σ

′
12.(5)

The elastic modulus s′ijkl (≡ s′11, s
′
12 , . . . , s′56, s

′
66) (i, j, k, l = 1,2,3) in (Ox′

1x
′
2x

′
3) which is de-

termined by s11, s12, . . . , s56, s66 in (Ox1x2x3) (see Fig. 2), the coefficient avw = cos [∠ (x′
v, xw)]

(v, w = 1,2,3), and transformations of subscripts are derived as [54]

s′ijkl =
3

∑

r,s,t,u=1

air ajs akt alu srstu i, j, k, l = 1, 2, 3;

a11 = cos ϕ sin ν, a12 = sin ϕ sin ν, a13 = cos ν, a21 = − sin ϕ, a22 = − cos ϕ, a23 = 0,

a31 = − cos ϕ cos ν, a32 = − sin ϕ cos ν, a33 = − sin ν;

ij ≡ ji; i = j → ij ≡ i; i 6= j → ij = 12 ≡ 6, ij = 13 ≡ 5, ij = 23 ≡ 4. (6)

In case of an isotropic continuum, we get [52,53,55]

ε′11 = s11σ
′
11 + s12 (σ′

22 + σ′
33) , ε′22 = s12 (σ′

11 + σ′
33) + s11σ

′
22, ε′33 = s12 (σ′

11 + σ′
22) + s11σ

′
33,

ε′13 = s44σ
′
13, ε′12 = s44σ

′
12; s11 =

1

E
, s12 = − µ

E
, s44 =

2 (1 + µ)

E
, (7)

where E and µ are the Young’s modulus and Poisson’s ratio, respectively. As presented in [54], we
get µ = 0.25. In case of real materials, we get µ < 0.5 [56]. The elastic moduli s′11, s

′
12 , . . . , s′56, s

′
66;

s11, s12 , . . . , s56, s66; the Young’ modulus E and the Poisson’s ratio µ are related to the spherical
particle (q= p), spherical envelope (q= e) and the cell matrix (q=m). The transformations s′ij →
s′ijq, sij → sijq, E → Eq, µ → µq (i, j = 1, . . . , 6; q= p,e,m) are then required to be considered.

2.4 Elastic energy. The elastic energy density wq accumulated at the arbitrary point in the spherical
particle (q= p), spherical envelope (q= e) and cell matrix (q=m), along with the elastic energy Wq

accumulated in the volume Vq of these components have the forms [29,52]

wq =
1

2

(

3
∑

i = 1

σ′
iiqε

′
iiq +

3
∑

i,j=1; i6=j

σ′
ijqε

′
ijq

)

, Wq =

∫

Vq

wq dVq = 8

π/2
∫

0

π/2
∫

0

r2
∫

r1

wq r2 dr dϕ dν, q = p, e,m,

(8)
where dVq = r2 dr dϕ dν is volume of the infinitesimal spherical cap for the angles ϕ, ν ∈ 〈0, π/2〉.
The integration boundaries r1, r2 are as follows: r1 = 0, r2 = R1 for the spherical particle; r1 = R1,
r2 = R2 for the spherical envelope; r1 = R1, r2 = rc for the cell matrix of the multi-particle-matrix
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system; r1 = R2, r2 = rc for the cell matrix of the multi-particle-envelope-matrix system; where R1,
R2 and rc = rc (R1, v) are related to the temperature T ∈ 〈Tf , Tr〉.

Elastic energy of the multi-particle-matrix and multi-particle-envelope-matrix systems is repre-
sented by the elastic energy Wc = Wp + Wm and Wc = Wp + We + Wm of the cubic cell, respectively.

As analysed in Secs. 3.2, 4.2, a thermal stress-strain state in the model systems (see Fig. 1) is
determined by mutually different solutions which result in mutually different values of Wc. Due to
these different values, such solution is considered to exhibit minimal value of Wc. Strictly speaking,
a principle of minimum total potential energy (i.e. the tendency of an elastic solid body to exhibit
minimum total potential energy) [29] is required to be considered.

As presented in [29], the total potential energy Wt = Wd − (Wv +Ws) consists of the deformation

energy Wd, and of the energy Wv and Ws which is induced by the volume and surface forces,
−→
Fv

and
−→
Fs, respectively. In case of the model systems (see Fig. 1), we get

−→
Fv =

−→
Fs = 0, and then

Wv = Ws = 0, Wt = Wd. The deformation energy Wd of the model systems is then identical with
Wc. Finally, in case of the model systems, the principle of minimum total potential energy is thus
’transformed’ to a principle of minimum value of Wc due to Wt = Wd = Wc.

2.5 Reason of thermal stresses. In case of the multi-particle-matrix system, the thermal stresses
are a consequence of the condition αp 6= αm as well as a consequence of a phase transformation which
originates at the temperature Ttq (q= p,m) at least in one component of this system. The thermal
expansion coefficient αq (q= p,e,m) along the axis x′

1 = xr (see Fig. 2) is given by Eq. (12). The
phase-transformation temperature Ttq is from the interval 〈Tf , Tr〉, where Tf is a final temperature of a
cooling process, and Tr is a relaxation temperature of this model system. The phase transformation at
Ttq ∈ 〈Tf , Tr〉 induces the radial strain ε′11tq = ε′11tq (ϕ, ν) along the axis x′

1. This phase-transformation
radial strain is a consequence of a difference in dimensions of mutually transforming crystal lattices.

In case of the multi-particle-envelope-matrix system, the thermal stresses originate as a conse-
quence of one of these conditions αp 6= αe = αm, αp 6= αe 6= αm αp = αe 6= αm as well as a
consequence of ε′11tq = ε′11tq (ϕ, ν) (q= p,e,m) which is induced at Ttq ∈ 〈Tf , Tr〉 (q= p,e,m) at least
in one component of this model system. The relaxation temperature Tr of the model systems is anal-
ysed below. The coefficient βq which includes αq and ε′11tq is determined below (see Eqs. (9)–(12)).
The determination of ε′11tq = ε′11tq (ϕ, ν) (q= p,e,m) for anisotropic and isotropic crystal lattices
is not presented due to a range of this brochure. This determination is presented in the doctoral
dissertation.

Relaxation temperature. The thermal stresses originate during a cooling process. Additionally,
the thermal stresses originate at the temperature T ∈ 〈Tf , Tr〉. As defined in [56], the relaxation
temperature Tr is such temperature below that the stress relaxation as a consequence of thermal-
activated processes does not occur in a material. The relaxation temperature is defined approximately
by the relationship Tr = (0.35 − 0.4) × Tm [56] and exactly by an experiment, where Tm is melting
temperature of the model systems (see Sec. 1.2).

The analysis of Tm for the multi-particle-matrix system is as follows. If the particles precipitate
from a liquid matrix, then Tm represents a minimum of the set {Tmp, Tmm}, where Tmp and Tmm are
melting temperatures of the particles and the matrix, respectively. If the particles precipitate from
a solid matrix, then Tm represents a melting temperature of the multi-particle-matrix system.

The analysis of Tm for the multi-particle-envelope-matrix system is as follows. If the particles and
envelopes precipitate from a liquid matrix, then Tm represents a minimum of the set {Tmp, Tme, Tmm},
where Tep is a melting temperature of the envelope. If the particles and envelopes precipitate from a
solid matrix, then Tm represents a melting temperature of the multi-particle-envelope-matrix system.

Let the multi-particle-matrix system be considered. If αp = αm, then the thermal stresses origi-
nate at the temperature Tt which represents maximal temperature of the set {Ttp, Ttm}. Ttp and Ttm

thus represent temperature of a phase transformation in the spherical particle and cell matrix, where
Ttq ∈ 〈Tf , Tr〉 (q= p,m).

The same is also valid for multi-particle-envelope-matrix system. In this case (i.e. on the condition
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αp = αe = αm), Tt represents maximal temperature of the set {Ttp, Tte, Ttm}, where Tte ∈ 〈Tf , Tr〉 is
temperature of a phase transformation in the spherical envelope.

Coefficients βp, βe, βm. As mentioned in Sec. 2.2, a mutual interaction of components of the model

systems is realized along the radial direction, i.e. along the axis x′
1 = xr (see Fig. 2). Accordingly,

the coefficient βq (q= p,e,m) is also related to x′
1.

Let the phase transformation originate at the temperature Ttq ∈ 〈Tf , Tr〉 in the component which
is related to the subscript q= p,e,m. Consequently, the coefficient βq = βq (T ) at the temperature
T ∈ 〈Tf , Ttq〉 ⊂ 〈Tf , Tr〉 has the form

βq = ε′11tq +

Ttq
∫

T

αIq dT +

Tr
∫

Ttq

αIIq dT, Ttq ∈ 〈Tf , Tr〉 , T ∈ 〈Tf , Ttq〉 ⊂ 〈Tf , Tr〉 , (9)

where αIq = αIq (T ) and αIIq = αIIq (T ) (see Eq. (12)) represent a thermal expansion coefficient of
the component at the temperature T ≤ Ttq and T ≥ Ttq, respectively. If T > Ttq, then the coefficient
βq = βq (T ) at the temperature T ∈ (Ttq, Tr〉 ⊂ 〈Tf , Tr〉 has the form

βq =

Tr
∫

T

αIIq dT, Ttq ∈ 〈Tf , Tr〉 , T ∈ (Ttq, Tr〉 ⊂ 〈Tf , Tr〉 . (10)

Let the phase transformation do not originate at the temperature Ttq ∈ 〈Tf , Tr〉, i.e. Ttq ∈/ 〈Tf , Tr〉.
The coefficient βq = βq (T ) at the temperature T ∈ 〈Tf , Tr〉 has the form

βq =

Tr
∫

T

αq dT, Ttq ∈/ 〈Tf , Tr〉 , T ∈ 〈Tf , Tr〉 , (11)

where αq = αq (T ) (see Eq. (12)) is a thermal expansion coefficient on the condition Ttq ∈/ 〈Tf , Tr〉.
The thermal stresses are then a consequence of the condition βq1

6= βq2
. In case of the multi-

particle-matrix and multi-particle-envelope-matrix systems, we get q1, q2 = p,m and q1, q2 = p, e,m,
respectively, where q1 6= q2.

Let αiq represent a thermal expansion coefficient along the axis xi (i= 1,2,3) of the Cartesian
system (Ox1x2x3) (see Fig. 2). The component for which one of these conditions α1q 6= α2q = α3q or
α1q 6= α2q 6= α3q or α1q = α2q 6= α3q is valid is anisotropic. In case of an anisotropic component
of the model systems (see Sec. 1.2), the thermal expansion coefficient αq along the axis x′

1 is then
derived as [57]

αq = a2
11α1q + a2

12α2q + a2
13α3q, (12)

where the coefficient aij = cos [∠ (x′
i, xj)] (i= 1; i, j = 1,2,3) is given by Eq. (6). In case of an

isotropic component, we get αq = α1q = α2q = α3q. Due to the term αIq in Eq. (9), the terms α1q,
α2q, α3q in Eq. (12) are replaced by α1Iq, α2Iq, α3Iq, respectively. Consequently, in case of αIIq, the
terms α1q, α2q, α3q in Eq. (12) are replaced by α1IIq, α2IIq, α3IIq, respectively.

2.6 Formulae for determination of the radial stresses p1, p2. In case of the multi-particle-
matrix system (see Fig. 1a), the formula

(1 − βm) (ε′22m)r=R1m
− (1 − βp)

(

ε′22p

)

r=R1p
= βm − βp, (13)

is considered for the determination of the radial stress p1 = p1 (ϕ, ν) acting at the particle-matrix
boundary (i.e. for r = R1) along the axis x′

1 (see Fig. 2). In case of multi-particle-envelope-matrix
system (see Fig. 1b), and on the condition βp 6= βe, the formula

(1 − βe) (ε′22e)r=R1e
− (1 − βp)

(

ε′22p

)

r=R1p
= βe − βp (14)

is considered for the determination of the radial stress p1 = p1 (ϕ, ν) which acts at the particle-
envelope boundary. In case of βm 6= βe, the formula

(1 − βm) (ε′22m)r=R2m
− (1 − βe) (ε′22e)r=R2e

= βm − βe (15)
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is considered for the determination of the radial stress p2 = p2 (ϕ, ν) which acts at the matrix-envelope
boundary.

3 Thermal stresses in the model systems with anisotropic components

3.1 Radial, tangential and shear stresses. Applying suitable mathematical procedures to the
Cauchy’s, compatibility and equilibrium equations as well as to the Hooke’s law for an anisotropic
continuum (see Sec. 2.3), we get

σ′
11 =

n
∑

i=1

Cir
λi , σ′

2+j2+j = (δ1j − δ0j)

(

c135+jσ
′
11 + c137+jr

∂σ′
11

∂r
+ c139+jr

2∂2σ′
11

∂r2

)

,

σ′
12+j = c153+jσ

′
11 + c155+jr

∂σ′
11

∂r
+ c157+jr

2∂2σ′
11

∂r2
, j = 0, 1, (16)

where n is a number of boundary conditions, Ci is an integration constant which is determined by
the boundary conditions, the exponent λi is required to represent a real number, and δ0i, δ1i (i= 0,1)
are the Kronecker’s symbols. The exponents λ1, . . . , λn represent real roots of one of the following
characteristics equations

c203+3iλ
2 + (c202+3i − c203+3i) λ + c201+3i = 0, i = 0 − 5, (17)

c540+4iλ
3 + (c539+4i − 3c540+4i) λ2 + (c538+4i − c539+4i + 2c540+4i) λ + c537+4i = 0, i = 0 − 29, (18)

The determination of Eqs. (16)–(18) is not presented due to a range of this thesis. This determi-
nation along with the coefficient ci = ci (ϕ, ν) (i= 1, . . . , 656) is presented in detail in the doctoral
dissertation. Additionally, the doctoral dissertation also presents the determination of characteris-
tics equations of an order of λ4 and λ5. Similarly, due to a range of this brochure, the analyses in
Secs. 3.1, 3.2 which are applied to these characteristics equations of an order of λ4 and λ5 are also
presented in the doctoral dissertation.

Due to i= 0 – 5, the equation (17) represents six characteristic equations with the variable λ =
λ (ϕ, ν) and with the parameters ϕ, ν. The parameters ϕ, ν are included in s′11, s

′
12 , . . . , s′56, s

′
66 which

are functions of aij = cos [∠ (x′
i, xj)] (i, j = 1,2,3) (see Eq. (6)). The elastic moduli s′11, s

′
12 , . . . , s′56, s

′
66

are included in the coefficients ci , . . . , c15+i which are then included in the coefficients c18+i , . . . , c7766+6j

(i= 1 – 3; j = 0 – 63).

The exponents λ
(17)(i)
1 = λ

(17)(i)
1 (ϕ, ν), λ

(17)(i)
2 = λ

(17)(i)
2 (ϕ, ν) which represent roots of the i-th

characteristic equation (i= 0 – 5) are derived as

λ
(17)(i)
j =

1

2c203+3i

[

c203+3i − c202+3i + (δ1j − δ2j)

√

(c203+3i − c202+3i)
2 − 4c201+3ic203+3i

]

, j = 1, 2.

(19)

Due to i= 0 – 5, the formula (19) represents six sets with the exponents λ
(17)(i)
1 , λ

(17)(i)
2 (i= 0 – 5),

i.e.
{

λ
(17)(0)
1 , λ

(17)(0)
2

}

, . . . ,
{

λ
(17)(5)
1 , λ

(17)(5)
2

}

. If both exponents of each of the sets are imaginary, or

none of these six sets consists of such real exponents which fulfil boundary conditions (see Sec. 3.3) for
a component of the model systems (see Sec. 1.2), then the characteristic equation (18) is considered.

Due to i= 0 – 29, the equation (18) represents thirty characteristic equations with three roots in

these thirty sets
{

λ
(18)(0)
1 , λ

(18)(0)
2 , λ

(18)(0)
3

}

, . . . ,
{

λ
(18)(29)
1 , λ

(18)(29)
2 , λ

(18)(29)
3

}

. The exponents λ
(18)(i)
1 =

λ
(18)(i)
1 (ϕ, ν), λ

(18)(i)
2 = λ

(18)(i)
2 (ϕ, ν), λ

(18)(i)
3 = λ

(18)(i)
3 (ϕ, ν) represent roots of the i-th characteristic

equation. The set
{

λ
(18)(i)
1 , λ

(18)(i)
2 , λ

(18)(i)
3

}

consists either of three real roots, or of one real and two

imaginary roots. If none of these thirty sets consists of such real exponents which fulfil boundary
conditions (see Sec. 3.3) for a component of the model systems (see Sec. 1.2), then a characteristic
equation of an order of λ4 which is determined in the doctoral dissertation is considered.
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Finally, these analyses concerning the characteristic equations (17), (18) are considered due to
the determination of a sufficient number of the real exponent λ which is required to fulfill boundary
conditions (see Sec. 3.3) for a component of the model systems (see Sec. 1.2).

Roots of the characteristic equation (18) are determined for a real component of the model
systems (see Sec. 1.2) by a suitable numerical method. Strictly speaking, numerical values of the
elastic moduli s11q, s12q , . . . , s56q, s66q (see Eq. (6)) are required to be substituted to the coefficients
which are included in (18). Consequently, the suitable numerical method is required to be applied
for the determination of these roots (the exponent λ ≡ λq) of the characteristic equation(18). The
subscripts q= p, q= p and q= p are related to the numerical values of s11q, s12q , . . . , s56q, s66q for the
spherical particle, spherical envelope and cell matrix, respectively.

3.2 Analysis of a number of solutions for the model systems. Let n
(17)(i)
q represent a number

of such real roots of the set
{

λ
(17)(i)
1p , λ

(17)(i)
2p

}

(i= 0, . . . , 5) which fulfil the boundary conditions (see

Sec. 3.3) for the spherical particle (q= p), the spherical envelope (q= e) and the cell matrix (q=m).
Let nq be a number of the boundary conditions for the component of the model systems which

is related to the subscript q= p,e,m, where n
(17)(i)
q ≥ nq. The set

{

λ
(17)(i)
1q , λ

(17)(i)
2q

}

(i= 0, . . . , 5)

(see Eq. (19)) represents the i-th set of these six sets
{

λ
(17)(0)
1 , λ

(17)(0)
2

}

, . . . ,
{

λ
(17)(5)
1 , λ

(17)(5)
2

}

which

are related to the characteristic equation (17). Let s
(17)(i)
q represent a number of solutions for the

thermal stresses in the component of the model systems which is related to the subscript q= p,e,m.

The number s
(17)(i)
q is related to the set

{

λ
(17)(i)
1q , λ

(17)(i)
2q

}

, and then we get

s(17)(i)
q =

(

n
(17)(i)
q

nq

)

=
n

(17)(i)
q !

nq!
(

n
(17)(i)
q − nq

)

!
. (20)

The number s(17) of solutions which determine a stress-strain state induced by the thermal stresses
in the multi-particle-matrix system is derived as

s(17) =

(

∑

i

s(17)(i)
p

)

×
(

∑

i

s(17)(i)
m

)

, (21)

where s(17) are related to the characteristic equation (17). In case of the multi-particle-envelope-
matrix system, we get

s(17) =

(

∑

i

s(17)(i)
p

)

×
(

∑

i

s(17)(i)
e

)

×
(

∑

i

s(17)(i)
m

)

. (22)

The superscript i ⊂ {0, . . . , 5} concerning the sum
∑

i

in Eqs. (21), (22) is related to such n
(17)(i)
q

for which the condition n
(17)(i)
q ≥ nq is valid (q= p,e,m). The same analysis is valid for s(18), which

includes s
(18)(j)
q for j = 0, . . . , 29. The parameter s

(18)(j)
q is related to

{

λ
(18)(j)
1 , λ

(18)(j)
2 , λ

(18)(j)
3

}

which

represents the j-th set of these thirty sets
{

λ
(18)(0)
1 , λ

(18)(0)
2 , λ

(18)(0)
3

}

, . . . ,
{

λ
(18)(29)
1 , λ

(18)(29)
2 , λ

(18)(29)
3

}

.

As an example, let the characteristic equations (17), (18) be considered for the determination of
a stress-strain state in the model systems (see Sec. 1.2). In case of the multi-particle-matrix system,
we get

s(17)(18) =

(

∑

j

s(17)(i)
p +

∑

l

s(18)(i)
p

)

×
(

∑

j

s(17)(i)
m +

∑

l

s(18)(i)
m

)

. (23)

In case of the multi-particle-envelope-matrix system, we get

s(17)(18) =

(

∑

j

s(17)(i)
p +

∑

l

s(18)(i)
p

)

×
(

∑

j

s(17)(i)
e +

∑

l

s(18)(i)
e

)

×
(

∑

j

s(17)(i)
m +

∑

l

s(18)(i)
m

)

. (24)
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The superscripts j ⊂ {0, . . . , 5} and l ⊂ {0, . . . , 29} concerning the sums
∑

j

,
∑

l

in Eqs. (23), (24)

are related to such n
(17)(j)
q and n

(18)(l)
q for which the conditions n

(17)(j)
q ≥ nq and n

(18)(l)
q ≥ nq are valid

(q= p,e,m), respectively.

3.3 Boundary conditions.
Spherical particle. The thermal stresses σ′

iip, σ′
12+jp (i= 1,2,3; j = 0,1) in the Cartesian system

(Px′
1x

′
2x

′
3) (see Fig. 2), and the thermal-stress induced radial displacement u′

1p along the axis x′
1 are

required to fulfil these boundary conditions
(

u′
1p

)

r=0
= 0, (25)

(

σ′
iip

)

r→0
9 ±∞, i = 1, 2, 3, (26)

(

σ′
12+ip

)

r→0
9 ±∞, i = 0, 1, (27)

(

σ′
11p

)

r=R1

= −p1. (28)

Equations (25) and (26)–(28) represent geometric and stress boundary conditions, respectively.
The boundary conditions (25)–(28) are considered for the multi-particle-matrix system on the condi-
tion βp 6= βm. The boundary conditions (25)–(28) are also considered for the multi-particle-envelope-
matrix systems on the conditions βp 6= βe = βm, βp 6= βe 6= βm (see Eqs. (9)–(12)). If βp = βe 6= βm,
then the boundary condition (28) is replaced by

(

ε′22p

)

r=R1

= (ε′22e)r=R1
=

(u′
1e)r=R1

R1

= −p2%
pe
1e, (29)

In this case, i.e. βp = βe 6= βm, the integration constant C1p includes %pe
1e. The coefficient %pe

1e can
be thus determined after the determination of the integration constant C1e. As mentioned above,
the integration constant C1e for βp = βe 6= βm is determined by the boundary condition (31). The
determination of C1p for βp = βe 6= βm is then preceded by the determination of C1e for βp = βe 6= βm.

Equations (25)–(28) result in one integration constant only, and then we get np = 1, where np

is a number of boundary conditions which are required for the spherical particle. The integration
constant C1p 6= 0 is then determined by Eq. (28).

On each of these conditions, βp 6= βm, βp 6= βe = βm, βp 6= βe 6= βm, βp = βe 6= βm, the absolute
value

∣

∣u′
1p

∣

∣ is required to represent an increasing function of r ∈ 〈0, R1〉. This increasing dependence
∣

∣u′
1p

∣

∣ − r exhibits a maximal value at the particle-matrix or particle-envelope boundary, thus for

r = R1. Due to
∣

∣u′
1p

∣

∣ ∝ rλ1p , the condition λ1p > 0 is required to be fulfilled.
Spherical envelope. If βp 6= βe 6= βm (see Eqs. (9)–(12)), then the following boundary conditions

(σ′
11e)r=R1

= −p1, (30)

(σ′
11e)r=R2

= −p2, (31)

are considered for the determination of the integration constants C1e 6= 0 and C2e 6= 0, and then ne =
2, where ne is a number of boundary conditions for the spherical envelope. In case of βp 6= βe 6= βm,
the real exponents λ1e and λ2e are not required to be defined by additional conditions, in contrast to
the condition λ1p > 0 for the spherical particle.

If βp 6= βe = βm, then the boundary condition (30) is considered for the determination of the
integration constant C1e 6= 0, and then we get ne = 1. In this case, i.e. βp 6= βe = βm, the absolute
value |u′

1e| is required to represent a decreasing function of the variable r ∈ 〈R1, R2〉 or, at the very
most, a constant function of r ∈ 〈R1, R2〉. This decreasing dependence |u′

1e| − r exhibits a maximal
value at the particle-envelope boundary, thus for r = R1. Due to |u′

1e| ∝ rλ1e+1, the condition
λ1e ≤ −1 is required to be fulfilled.

If βp = βe 6= βm, then the boundary condition (31) along with the condition ne = 1 are considered
for the determination of the integration constant C1e 6= 0. The absolute value |u′

1e| is required
to represent an increasing function of r ∈ 〈R1, R2〉 or, at the very most, a constant function of

14



r ∈ 〈R1, R2〉. This increasing dependence |u′
1e| − r exhibits a maximal value at the matrix-envelope

boundary, thus for r = R2 = R1 + t. Due to |u′
1e| ∝ rλ1e+1, the condition λ1e ≥ −1 is required to be

fulfilled.
Cell matrix. The thermal stresses in the cell matrix are derived regarding the standard boundary
conditions (32)–(34) which are mandatory. In addition to (32)–(34), the additional boundary condi-
tions (36), (37) might be also considered. With regard to (36), the dependence u′

1m − r is required
to be extremal on the cell surface, i.e. for r = rc. With regard to (37), the dependence wm − r is
required to be extremal on the cell surface.

The mandatory boundary conditions for the multi-particle-matrix and multi-particle-envelope-
matrix systems are as follows.

• In case of the multi-particle-matrix system, the conditions (32), (34) are considered.

• In case of the multi-particle-envelope-matrix system, the conditions (33), (34) are considered
for βp 6= βe 6= βm or βp = βe 6= βm (see Eqs. (9)–(12)).

• In case of the multi-particle-envelope-matrix system, the conditions (34), (35) are considered
for βp 6= βe = βm.

Accordingly, the four following combinations of the mandatory and additional boundary condi-
tions for the multi-particle-matrix and multi-particle-envelope-matrix systems are considered:

1. the mandatory boundary conditions (32), (34) or (33), (34).

2. the mandatory boundary conditions (32), (34) or (33), (34) along with the additional boundary
condition (36).

3. the mandatory boundary conditions (32), (34) or (33), (34) along with the additional boundary
condition (37).

4. the mandatory boundary conditions (32), (34) or (33), (34) along with the additional boundary
conditions (36) and (37).

Mandatory boundary conditions. The thermal radial stress σ′
11m and the thermal-stress induced

radial displacement u′
1m are required to fulfil these mandatory boundary conditions

(σ′
11m)r=R1

= −p1, (32)

(σ′
11m)r=R2

= −p2, (33)

(u′
1m)r=rc

= 0, (34)

where the distance rc is given by Eq. (1). Equations (32), (33) and (34), represent stress and
geometric boundary conditions, respectively. The mandatory boundary conditions (32), (34) are
considered for the multi-particle-matrix for βp 6= βm. The mandatory boundary conditions (33), (34)
are also considered for the multi-particle-envelope-matrix system on the conditions βp 6= βe 6= βm or
βp = βe 6= βm. If βp 6= βe = βm, then the boundary condition (33) is replaced by

(ε′22m)r=R2
= (ε′22e)r=R2

=
(u′

1e)r=R2

R2

= −p1 %me
2e , (35)

In this case, i.e. βp 6= βe = βm, the integration constants C1m, C2m both include %me
2e . The

coefficient %me
2e can be thus determined after the determination of the integration constant C1e. As

mentioned above, the integration constant C1e for βp 6= βe = βm is determined by the boundary con-
dition (30). The determination of C1m, C2m for βp 6= βe = βm is then preceded by the determination
of C1e for βp 6= βe = βm.

Equations (32)–(35) result in two integration constants, and then we get nm = 2 where nm is a
number of boundary conditions which are required for the cell matrix.

In case of the multi-particle-matrix system, the absolute value |u′
1m| is required to represent a

decreasing function of r ∈ 〈R1, rc〉 due to (u′
1m)r=rc

= 0 (see Eq. (34)). This decreasing dependence
|u′

1m| − r exhibits a maximal value at the particle-matrix boundary, thus for r = R1. The same is
also valid for the multi-particle-envelope-matrix system on each of the conditions βp 6= βe = βm,
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βp 6= βe 6= βm, βp = βe 6= βm, The decreasing course of the dependence |u′
1m| − r in the cell matrix

of the multi-particle-matrix and multi-particle-envelope-matrix systems is ensured by integration
constants.

The determination of (u′
1m)r=rc

= 0 is based on a concept of the imaginary separation of compo-
nents of the model systems (see Fig. 1). This concept which is also considered for the determination
of the Eshelby’s model [51] is described in detail in Sec. 2.2.

Let the multi-particle-matrix system be considered. Let the components of this system be imagi-
narily separated at the relaxation temperature Tr. In this case, the spherical particles in the infinite
matrix are replaced by spherical hollows. Let R1 = R1 (T ) be a temperature dependence of a radius
of these separated particles. Let R1m = R1m (T ) be a temperature dependence of a radius of the
spherical hollows. Let these separated components be cooled down from the relaxation temperature
Tr to the temperature T , where T < Tr.

A radius of the separated particle is thus changed from R1 (Tr) to R1 (T ), where R1 (T ) < R1 (Tr).
A radius of the hollow is thus changed from R1m (Tr) to R1m (T ), where R1m (T ) < R1m (Tr).

Additionally, the condition R1 (Tr) = R1m (Tr) is valid.
A dimension of the cubic cell is thus changed from d (Tr) to d (T ), where d (T ) < d (Tr).
Let the condition βp ≶ βm be considered. If βp ≶ βm, then R1 (T ) ≷ R1m (T ) for T < Tr.
As analysed in Sec. 2.2, the infinitesimal spherical cap exhibits a displacement along the axis

x′
1 (see Fig. 2). This displacement along x′

1 results from the symmetry of the multi-particle-matrix
system. The axis x′

1 of the Cartesian system (Px′
1x

′
2x

′
3) defines a radial direction regarding the

Cartesian system (Ox1x2x3) (see Fig. 2).
Let the separated particle with the radius R1 (T ) be put into the spherical hollow with the radius

R1 (T ) of the cubic cell with with the dimension d (T ). After the embedding of the separated particle
in the hollow at the temperature T < Tr, a surface of the particle is pushed or pulled by a surface
of the matrix due to R1 (T ) > R1m (T ) or R1 (T ) < R1m (T ), respectively. Similarly, a surface of the
matrix is pushed or pulled by a surface of the particle due to R1 (T ) > R1m (T ) or R1 (T ) < R1m (T ),
respectively. The pushing or pulling at T < Tr within the spherical particle and cell matrix is
expressed by the thermal-stress induced radial displacements u′

1p and u′
1m along the axis x′

1, i.e.
along a radial direction.

The same is also valid for the multi-particle-envelope-matrix system as well as for the thermal-
stress induced radial displacement u′

1e in the spherical envelope.
The pushing or pulling, which is induced in the cubic cell after the embedding at T < Tr, is

related to the cell dimension d (T ) at the temperature T < Tr. This fact is required to be considered
within the following analysis which concerns the determination of the mandatory boundary condition
(u′

1m)r=rc
= 0.

An analysis of the mandatory boundary condition (u′
1m)r=rc

= 0 is as follows.
Let C be an arbitrary point on the surface 1234 (see Fig. 3). The surface 1234 with the normal

x2 represents a common surface of two neighbouring cubic cells A and B with the centres OA and
OB, respectively. These neighbouring cubic cells with the dimension d (T ) at the temperature T < Tr

are cells of the multi-particle-matrix system or the multi-particle-envelope-matrix system.
A position of the arbitrary point C on the surface 1234 of the cell A is determined by the spherical

coordinates (rcA, ϕA, νA) regarding the Cartesian system (OAx1Ax2x3A), where rcA =
∣

∣OAC
∣

∣. Let the
axis x′

1A (see Figs. 2, 3) define a radial displacement in the cubic cell A. Let u′
1mA = u′

1mA (r, ϕA, νA)
represent the thermal-stress induced radial displacement along the axis x′

1A in the cell matrix of the
cell A.

A position of the arbitrary point C on the surface 1234 of the cell B is determined by the spherical
coordinates (rcB, ϕB, νB) regarding the Cartesian system (OBx1Bx2x3B), where rcB =

∣

∣OBC
∣

∣. Let the
axis x′

1B (see Figs. 2, 3) define a radial displacement in the cubic cell B. Let u′
1mB = u′

1mB (r, ϕB, νB)
represent the thermal-stress induced radial displacement along the axis x′

1B in the cell matrix of the
cell B.

The distances rcA = rcA (d, ϕA, νA), rcB = rcB (d, ϕB, νB) are given by Eq. (1).
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Due to the cubic shape of the cells A, B, we get ϕA = ϕB = ϕ, νA = νB = ν, rcA = rcB =
rc (d, ϕ, ν), u′

1mA = u′
1mB = u′

1m (r, ϕ, ν).
Let the condition (u′

1m)r=rc
< 0 be assumed to be valid. The arbitrary point C on the surface

1234 thus tends to be shifted along the axis x′
1A towards the centre OA as well as along the axis x′

1B

towards the centre OB.

Figure 3: The arbitrary
point C on the surface 1234

of two neighbouring cubic
cells with the centres OA

and OB both with the di-
mension d (T ) at the tem-
perature T < Tr. Due to
the cubic shape of the cells
A, B, we get ϕA = ϕB =
ϕ, νA = νB = ν, rcA =
∣

∣OAC
∣

∣ = rcB =
∣

∣OBC
∣

∣ =
rc, where the distance rc is
given by Eq. (1).

This is possible in such case when the volume dVA =
(

rcA −
∣

∣(u′
1mA)r=rcA

∣

∣

)

dϕA ×
(

rcA −
∣

∣(u′
1mA)r=rcA

∣

∣

)

dνA ×
∣

∣(u′
1mA)r=rcA

∣

∣ in the cubic cell A is replaced by the vacuum, and simul-

taneously, the volume dVB =
(

rcB −
∣

∣(u′
1mB)r=rcB

∣

∣

)

dϕB ×
(

rcA −
∣

∣(u′
1mB)r=rcB

∣

∣

)

dνA ×
∣

∣(u′
1mB)r=rcB

∣

∣

in the cubic cell B is also replaced by the vacuum.
The volume dVQ (Q=A,B) is characterized by the length

∣

∣(u′
1mA)r=rcA

∣

∣ along the axis x′
1Q

and by the surface dS in a point on x′
1Q with the coordinate r = rcQ −

∣

∣

∣

(

u′
1mQ

)

r=rcQ

∣

∣

∣
. The sur-

face dS with the normal x′
1Q is characterized by the dimensions

(

rcQ −
∣

∣

∣

(

u′
1mQ

)

r=rcQ

∣

∣

∣

)

dϕQ and
(

rcQ −
∣

∣

∣

(

u′
1mQ

)

r=rcQ

∣

∣

∣

)

dνQ (Q=A,B).

Due to the general position of the point C on the surface 1234, if (u′
1m)r=rc

< 0, then the matrix
between neighbouring cells is replaced by the vacuum what is physically unacceptable. The same
analysis is also valid for the condition (u′

1m)r=rc
> 0.

Accordingly, the mandatory boundary condition (u′
1m)r=rc

= 0 for the thermal-stress induced
displacement u′

1m = u′
1m (r, ϕ, ν) in the cell matrix is thus valid.

Additional boundary conditions. As presented in Sec. 1.2, the division of the matrix the model
systems into identical cubic cells is imaginary. Accordingly, the surface of the cubic cell does not

represent a physical boundary. As an example, a physical boundary is represented by a boundary of
two material components.

Due to the fact that the surface of the cubic cell is not a physical boundary, the connection of
these identical functions u′

1mA = u′
1mA (r, ϕA, νA) and u′

1mB = u′
1mB (r, ϕB, νB) in the point C (i.e.

for r = r1cA = r1cB = rc) on the surface 1234 (see Fig. 3) is assumed to be ’smooth’. Due to this
assumption of the ’smooth’ connection, the dependences u′

1mA − r and u′
1mB − r are thus required

not to mutually create a singular point at the point C, i.e. for r = rc (see Eq. (1)). The same
analysis concerning the smooth course of the dependence u′

1m − r for r = rc is also valid in case of
the dependence wm − r for r = rc, where wm = wm (r, ϕ, ν) is thermal-stress induced elastic energy
density (see Eq. (8)).

To fulfil this non-singularity assumption, the functions u′
1m = u′

1m (r, ϕ, ν), wm = wm (r, ϕ, ν) are
required to be extremal on the surface of the cubic cell, i.e. for r = rc. In case of |u′

1m| and wm,
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this extreme for r = rc represents the minimum, where the dependences |u′
1m| − r and wm − r are

decreasing. If u′
1m < 0, then this extreme for r = rc represents the maximum.

With regard to Eq. (2), the additional boundary conditions for the cell matrix of the model
systems (see Fig. 1) are derived as

(ε′11m)r=rc
=

(

∂u′
1m

∂r

)

r=rc

= 0, (36)
(

∂wm

∂r

)

r=rc

= 0. (37)

4 Thermal stresses in the model systems with isotropic components

4.1 Radial, tangential and shear stresses. Applying suitable mathematical procedures to the
Cauchy’s, compatibility and equilibrium equations as well as to the Hooke’s law for an isotropic
continuum (see Sec. 2.3), we get

σ′
11 = (c1 + c2)

∂u′
1

∂r
− 2c2

u′
1

r
, σ′

22 = σ′
33 = −c2

∂u′
1

∂r
+ c1

u′
1

r
, σ′

12 =
1

s44r

∂u′
1

∂ϕ
, σ′

13 =
1

s44r

∂u′
1

∂ν
,

c1 =
E

(1 + µ) (1 − 2µ)
, c2 = −µ c1, c3 = −4 (1 − µ) . (38)

The radial displacement u′
1q = u′

1q (r, ϕ, ν) along the axis x′
1 (see Fig. 2) in the spherical particle

(q= p), the spherical envelope (q= e) and the cell matrix (q=m) which is determined by four different
mathematical procedures has the form

u′
1q =

2
∑

i = 1

C
(1)
iq ξ

(1)
iq u

(1)
irq, u

(1)
irq = rλiq , ξ

(1)
iq =

1

3s44 (c1 + c2)

(

1

λiq + 2
− 1

λiq − 1

)

,

λiq =
1

2

[

1 + (δ1i − δ2i)
√

Dq

]

, Dq = 1 + 16 (1 − µq) [1 + 4 (1 − µq)] , i = 1, 2, (39)

u′
1q =

3
∑

i =1

C
(2)
iq ξ

(2)
iq u

(2)
irq, u

(2)
1rq = r

(

1

3
− ln r

)

, u
(2)
2rq = rc3q , u

(2)
3rq = 1,

ξ
(2)
1q =

1

3s44q (c1q + c2q)
, ξ

(2)
2q = ξ

(2)
1q

(

1

c3q + 2
− 1

c3q − 1

)

, ξ
(2)
3q =

3 ξ
(2)
1q

2
, (40)

u′
1q =

3
∑

i =1

C
(3)
iq ξ

(3)
iq u

(3)
irq, u

(3)
1rq = r

(

4

3
− ln r

)

, u
(3)
2rq = rc3q , u

(3)
3rq =

1

2
+ ln r,

ξ
(3)
1q = c3q ξ

(2)
1q , ξ

(3)
2q = 3 ξ

(3)
1q

[

1

2c3q

− 1

3 (c3q − 1)
− 1

6 (c3q + 2)

]

, ξ
(3)
3q =

3 ξ
(3)
1q

2
, (41)

u′
1q =

3
∑

i =1

C
(4)
iq u

(4)
irq, u

(4)
1rq = r, u

(4)
2rq = rc3q , u

(4)
3rq =

1

r2
, (42)

where detailed analyses of the four mathematical procedures are presented in the doctoral disserta-
tion. In case of an elastic solid continuum, we get µ = 0.25 [54]. In case of a real isotropic material,
we get µ < 0.5 [56], and then c3q < 0, we get Dq > 0, and the real exponents λ1q > 3, λ2q < −2.

Accordingly, u
(1)
1rq = u

(1)
1rq (r), u

(3)
3rq = u

(3)
3rq (r), u

(4)
1rq = u

(4)
1rq (r) and u

(1)
2rq = u

(1)
2rq (r), u

(2)
2rq = u

(2)
2rq (r),

u
(3)
2rq = u

(3)
2rq (r), u

(4)
2rq = u

(4)
2rq (r), u

(4)
3rq = u

(4)
3rq (r) are increasing and decreasing functions of the variable

r, respectively, and u
(2)
3rq 6= f (r) is a constant function.

The function u
(2)
1rq = u

(2)
1rq (r) increases or decreases on the condition ∂u

(2)
1rq/∂r > 0 or ∂u

(2)
1rq/∂r < 0,

respectively. The conditions ∂u
(2)
1rq/∂r > 0 and ∂u

(2)
1rq/∂r < 0 result in r < e−2/3 ≈ 0.51342 m and
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r > e−2/3 ≈ 0.51342 m, respectively, where e ≈ 2.71828 is the Euler’s number [58]. In case of real
two- and three-component materials, we get R1 < 0.51342 m, R2 < 0.51342 m, d < 0.51342 m, and
then r < 0.51342 m. Finally, due to r < 0.51342 m for real two- and three-component materials, the
function u

(2)
1rq = u

(2)
1rq (r) represents an increasing function of the variable r. Similarly, the condition

∂u
(3)
1rq/∂r ≷ 0 results in r ≶ e1/3 ≈ 1.39561 m, and then u

(3)
1rq = u

(3)
1rq (r) represents an increasing

function of the variable r.

4.2 Analysis of a number of solutions for the model systems. The analysis in Sec. 3.3
which concern a course of the dependence

∣

∣u′
1q

∣

∣ − r is also valid for an isotropic component. The

course of
∣

∣u′
1q

∣

∣ − r results from courses of the functions u
(1)
irq = u

(1)
irq (r), u

(2)
jrq = u

(2)
jrq (r) u

(3)
jrq = u

(3)
jrq (r)

u
(4)
jrq = u

(4)
jrq (r) (i= 1,2; j = 1,2,3; q= p,e,m) (see Eqs. (39)–(42)). The analysis of courses of these

functions regarding the boundary conditions which is presented in detail in the doctoral dissertation
is as follows.

Let siso
q represent a number of solutions which are determined by the four mathematical procedures

for the thermal stresses in the isotropic spherical particle (q= p), the isotropic spherical envelope
(q= e) and the isotropic cell matrix (q=m).
Spherical particle. If βp 6= βm; βp 6= βe = βm and ε′11te 6= ε′11tp; βp 6= βe 6= βm; βp = βe 6= βm; then
siso

p = 4. If βp 6= βe = βm and ε′11te = ε′11tp, then siso
p = 1.

Spherical envelope. If βp 6= βe = βm and ε′11te 6= ε′11tp, then siso
e = 4. If βp 6= βe = βm and ε′11te = ε′11tp,

then siso
e = 1. If βp = βe 6= βm, then siso

e = 6. If βp 6= βe 6= βm, then siso
e = 10.

Cell matrix. In case of the cell matrix, we get siso
m = 13, where the mandatory boundary conditions

without or with the additional boundary condition (36) are considered. The additional boundary
condition (37) is not considered due to the following analysis.

With regard to Eq. (8), the thermal-stress induced elastic energy density wm = wm (r, ϕ, ν) > 0
in the cell matrix includes the shear stresses σ′

12m and σ′
13m as well as the shear strains ε′12m and ε′13m

which are functions of ∂u′
1m/∂ϕ and ∂u′

1m/∂ν (see Eq. (2)), respectively. The terms ∂u′
1m/∂ϕ and

∂u′
1m/∂ν are functions of the terms ∂Cim/∂ϕ and ∂Cim/∂ν (i= 1, . . . , n), respectively.
On the one hand, the additional boundary condition (37) concerning a course of the dependence

wm − r on a surface of the cubic cell might be considered to be a reasonable assumption. Equation
(37) thus includes the terms ∂Cim/∂ϕ, ∂Cim/∂ν, where Cim ≡ C

(j)
im (i= 1, . . . , 3; j = 2,3,4) (see

Eqs. (40)–(42)). On the other hand, no conditions exist for the determination of ∂Cim/∂ϕ, ∂Cim/∂ν.
Accordingly, if the model systems (see Fig. 1) consist of isotropic components, then the additional
boundary condition (37) can not be considered in case of the cell matrix.

4.3 Number of solutions for the model systems. The stress-strain state which is induced by
the thermal stresses in the multi-particle-matrix system with isotropic components (see Fig. 1a) is
described by s = siso

p ×siso
m = 4×13 = 52 mathematical solutions which fulfil the boundary conditions

(see Sec. 3.3). In case of the multi-particle-envelope-matrix system with isotropic components (see
Fig. 1b) for βp 6= βe = βm, we get s = 208 and s = 13 for ε′11e 6= ε′11p and ε′11e = ε′11p, respectively. If
βp 6= βe 6= βm, then we get s = 520. If βp = βe 6= βm, then we get s = 312.

4.4 Thermal stresses in the model systems with isotropic and anisotropic components.
The determination of an analytical model of the thermal stresses in such model system (see Fig. 1)
which consists of anisotropic and isotropic components is as follows.

In case of an anisotropic component, formulae for the thermal stresses and strains as well as
formulae for thermal-stress induced radial displacement, thermal-stress induced elastic energy density
and elastic energy (see Sec. 2.4) are taken from Chap. 3. In case of an isotropic component, these
formulae are taken from Chap. 4. These formulae for anisotropic and isotropic components includes
the radial stresses p1, p2 which are determined by the formulae (13)–(15).

The formulae (13)–(15) include tangential strains in components of the model systems (see Fig. 1).
In case of an anisotropic component, a formula for the tangential strain which is included in Eqs. (13)–
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(15) is taken from Chap. 4. Similarly, in case of an isotropic component, a formula for the tangential
strain which is included in Eqs. (13)–(15) is taken from Chap. 3.

Let s represent a number of solutions of the model system which consists of anisotropic and
isotropic components. As an example, in case of the multi-particle-matrix system with anisotropic
spherical particles and an isotropic matrix, we get s = saniso

p + siso
m . The numbers saniso

p and siso
m of

solutions for the isotropic particle and cell matrix are taken form Chaps. 3 and 4, respectively. In
case of the multi-particle-envelope-matrix system, a formula for s can be analogically determined.

Finally, if s > 1, then a principle of minimum total potential energy of an elastic solid body [29]
is required to be considered (see Sec. 2.4).

5 Related phenomena

5.1 Analytical model of crack formation. The analytical modelling of crack formation2 is based
on the comparison of thermal-stress induced elastic energy in the cubic cell with energy for the
creation of the surface of a crack. This comparison results from the analysis which is applied to a
solid continuum of a general shape (see Fig. 4a)3.

(a) (b) (c)

Figure 4: The solid continuum with a general shape with the volume V in the Cartesian system
(Oxixjxk) (i, j, k = 1,2,3; i 6= j 6= k); (a) without and (b) with a crack. The crack is formed in the
plane xixj. The shaded area represents cuts of the solid continuum in the planes xixj, xixk, xijxk,
where xij ⊂ xixj, ϕ = ∠ (xi, xij) ∈ 〈0, 2π〉. The curves 1, 2, 3, 4 on a surface of the solid continuum
are outlines of the cuts in the planes xixk, xixj, xjxk, xijxk, respectively. P and P

′′

are points on

the axis xij and the curve 4, respectively, where |OP | = xij, PP ′′ ‖ xk. The curves 5 and 6 represent
the crack shape in the planes xixk and xijxk, respectively. The planes xixk, xijxk are perpendicular
to the crack formation plane xixj. The curve 7 determines a position of the crack tip in the crack
formation plane xixj. The function f (ij) = f (ij) (xij, ϕ, xk) related to the curve 6 describes the crack
shape in the plane xijxk. The point P0 ∈ xixj with the coordinate xij = x0 (ϕ) represents the crack
tip related to the plane xijxk. In case of the multi-particle-matrix system (see Fig. 1a), one eighth
of the cubic cell with the central spherical particle with the radius R1 is considered, where d is the
cubic cell dimension. The coefficient cϕ = cϕ (ϕ) is given by Eq. (1).

2The term ’crack formation’ which is used in the doctoral dissertation includes the crack initiation (in the plane

xixj for R1 = R
(ij)
1cq ) (q= p,m) and the crack propagation (in the plane xixj for R1 > R

(ij)
1cq ). The crack initiation is

followed by the crack propagation.
3Due to a range of the doctoral dissertation, this analytical model of the crack formation induced by the thermal

stresses is determined for the multi-particle-matrix system with anisotropic and/or isotropic components (see Fig 1a).
Results for the multi-particle-envelope-matrix system (see Fig 1b) which are presented in [D18] can be determined
analogically.
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This comparison results in the formula

∂f (ij)

∂xij

= ± 1

skk

[

K
(ij)
IC

]2

√

[

W
(ij)
c

]2

−
{

skk

[

K
(ij)
IC

]2
}2

, (43)

for the function f (ij) = f (ij) (xij, ϕ, xk) (see the curve 6, Fig. 1b) which describes the crack shape in
the plane xijxk (i, j, k = 1,2,3; i 6= j 6= k), where xij ⊂ xixj, ϕ = ∠ (xi, xij) ∈ 〈0, 2π〉. The plane

xijxk is perpendicular to the crack formation plane xixj. K
(ij)
IC is fracture toughness in the crack

formation plane xixj. Additionally, the formula (43) is considered for W
(ij)
c −skk

[

K
(ij)
IC

]2

≥ 0. Finally,

W
(ij)
c = W

(ij)
c (xij, ϕ) =

∫

PP
′′

w(ij) dxk represent a curve integral of the thermal-stress induced elastic

energy density w = w(ij) = w(ij) (xij, ϕ, xk) along the curve PP ′′, where w = w(ij) = w(ij) (xij, ϕ, xk)
is determined by the cylindrical coordinates (xij, ϕ, xk).

Let the multi-particle-matrix system be considered. In case of thermal stresses, W
(ij)
c = W

(ij)
cp =

W
(ij)
cp (xij, ϕ,R1, v) and W

(ij)
c = W

(ij)
cm = W

(ij)
cm (xij, R1, vϕ) represent increasing and decreasing func-

tions of the variable xij ∈ 〈0, R1〉 andxij ∈ 〈R1, d/ (2cϕ)〉, respectively, where the interval ϕ ∈ 〈0, π/2〉
is sufficient to be considered due to the symmetry of the multi-particle-matrix system (see Sec. 2.1.

Accordingly, f
(ij)
p = f

(ij)
p (xij, ϕ,R1, v) and f

(ij)
m = f

(ij)
m (xij, ϕ,R1, v) are assumed to be also increas-

ing and decreasing functions of xij, where the sign ”+” and ”-” in Eq. (43) is considered, respectively.

Additionally, formula (43) is considered for W
(ij)
cq − skkq

[

K
(ij)
ICq

]2

≥ 0.

(a) (b)

Figure 5: A schematic illustration of a shape of cracks in the plane xijxk (see Fig. 4c). The crack with
a tip in the point P0 is formed in the plane xixj in (a) the spherical particle and (b) the cell matrix.

The crack shape in the plane xijxk is described by the increasing and decreasing functions f
(ij)
p =

f
(ij)
p (xij, ϕ,R1, v) and f

(ij)
m = f

(ij)
m (xij, ϕ,R1, v) of the variable xij ∈ 〈x0p, R1〉 and xij ∈ 〈R1, x0m〉

for R1 > R
(ij)
1cp and R1 > R

(ij)
1cm (see Eqs. (44)–(46)), respectively. The coefficient cϕ = cϕ (ϕ) is given

by Eq. (1).

Consequently, the increasing and decreasing functions f
(ij)
p = f

(ij)
p (xij, ϕ,R1, v) and f

(ij)
m =

f
(ij)
m (xij, ϕ,R1, v) of the variable xij ∈ 〈x0p, R1〉 and xij ∈ 〈R1, x0m〉 which describe the crack shape

in the plane xijxk in the spherical particle and the cell matrix, respectively, are derived as (see Fig. 5)

f (ij)
p =

1

skkp

[

K
(ij)
ICp

]2





∫

√

[

W
(ij)
cp

]2

−
{

skkp

[

K
(ij)
ICp

]2
}2

dxij − C(ij)
p



 , xij ∈ 〈x0p, R1〉 , R1 > R
(ij)
1cp ,

(44)
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f (ij)
m =

1

skkm

[

K
(ij)
ICm

]2



C(ij)
m −

∫

√

[

W
(ij)
cm

]2

−
{

skkm

[

K
(ij)
ICm

]2
}2

dxij



 , xij ∈ 〈R1, x0m〉 , R1 > R
(ij)
1cm,

(45)
where ϕ ∈ 〈0, π/2〉, R1 and v ∈ (0, π/6〉 (see Sec. 1.3) represent parameters of these functions. The

integration constant C
(ij)
q (q= p,m) which is determined by the boundary condition

[

f
(ij)
q

]

xij=x0q

= 0

has the form

C(ij)
q =





∫

√

[

W
(ij)
cq

]2

−
{

skkq

[

K
(ij)
ICq

]2
}2

dxij





xij=x0q

, q = p,m. (46)

The condition
[

W (ij)
cq (xij, ϕ,R1, v)

]

xij=R1

− skkq

[

K
(ij)
ICq

]2

= 0, q = p,m, (47)

represents an equation with the variable R1 and the parameters ϕ, v. The root R
(ij)
1cq = R

(ij)
1cq (ϕ, v)

of Eq. (47) represents a critical particle radius which is a reason of the crack initiation in the plane
xixj in the spherical particle (q= p) or cell matrix (q=m) of the multi-particle-matrix system. The

determination of R
(ij)
1cp or R

(ij)
1cm is related to such position xij ∈ 〈0, R1〉 or xij ∈ 〈R1, d/ (2cϕ)〉 at which

the dependence W
(ij)
cp − xij or W

(ij)
cm − xij is maximal, respectively. In case of the thermal stresses,

we get xij = R1 for W
(ij)
cp − xij and W

(ij)
cm − xij.

The critical particle radius R
(ij)
1cq thus defines a limit state with respect to the crack initiation in

the plane xixj in the spherical particle (q= p) and cell matrix (q=m). The crack initiation in the

plane xijxk is then followed by the crack propagation for R1 > R
(ij)
1cq .

Let the condition R1 > R
(ij)
1cq (ϕ, v) be valid. The condition

W (ij)
cq (xij, ϕ,R1, v) − skkq

[

K
(ij)
ICq

]2

= 0, R1 > R
(ij)
1cq , q = p,m, (48)

represents an equation with the variable xij and the parameters ϕ, R1, v. The root x0q = x0q (ϕ,R1, v)
which is a function of the variable ϕ defines a position of the crack tip point P0 on the axis xij (see
Fig. 4b), where R1, v represent parameters of this function. The point P0 ∈ xixj with the coordinate
xij = x0q (ϕ,R1, v) represents the crack tip related to the plane xijxk. The dependence x0q − ϕ thus
defines the crack shape in the plane xixj in the spherical particle (q= p) or cell matrix (q=m). With
regard to Fig. 4b, the dependence x0q − ϕ thus defines the curve 7.

As mentioned above, the critical particle radius R
(ij)
1cq = R

(ij)
1cq (ϕ, v) defines such limit state which

is related to one value of the variable ϕ ∈ 〈0, π/2〉. Consequently, the minimal value R
(ij)
1cq min of the

dependence R
(ij)
1cq − ϕ defines a limit state related to such plane xijxk which corresponds to maximal

value of the dependence W
(ij)
cq . The maximal value R

(ij)
1cq max of the dependence R

(ij)
1cq −ϕ then defines

a ’total’ limit state of the crack initiation in the plane xixj in the spherical particle (q= p) or cell
matrix (q=m).

The analysis which results in Eqs. (43)–(48) is valid disregarding the determination of the curve

integral W
(ij)
cq (q= p,m). On the one hand, the thermal stresses are modified (changed) during the

crack propagation for R1 > R
(ij)
1cq . Accordingly, W

(ij)
cq is also modified (changed) during the crack

propagation. Such modification might be analytically and/or computationally determined, and then

this modification can be applied to Eqs. (43)–(48). On the other hand, formulae for W
(ij)
cq (see

Eqs. (50), (51)) do not consider the modification of W
(ij)
cq during the crack propagation. These

formulae for W
(ij)
cq are thus determined for a stress-strain state which is induced by the thermal

stresses before the crack initiation. Consequently, these formulae are then required to be considered
only in case of a two-component material with ceramic components. In general, a ceramic component
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exhibits a high-speed crack propagation [39]–[41] during which the modification (change) of W
(ij)
cq

can be assumed to be neglected.
Finally, the determination of R

(ij)
1cq which considers the thermal stresses before the crack initiation

is valid for any two-component material.
Due to a range of this brochure, the curve integral W

(ij)
cq = W

(ij)
cq (xij, ϕ,R1, v) (q = p,m) is

determined for the multi-particle-matrix system (see Fig. 1a) on the condition βp (ϕ, ν) = βm (ϕ, ν)
for ν = νpm (ϕ). If the multi-particle-matrix system does not exhibit a phase transformation at
the temperature T ∈ 〈Tf , Tr〉, then the condition βp = βm is transformed to αp (ϕ, ν) = αm (ϕ, ν).
Consequently, an analysis of the condition αp (ϕ, ν) − αm (ϕ, ν) = 0 is as follows.

1. If the differences α1p − α1m, α2p − α2m, α3p − α3m exhibits identical signs, i.e. α1p ≷ α1m,
α2p ≷ α2m, α3p ≷ α3m, then the condition αp (ϕ, ν) 6= αm (ϕ, ν) is valid for ϕ, ν ∈ 〈0, π/2〉.
Otherwise, the following analysis is considered.

2. If α1p ≷ α1m, α2p ≷ α2m, α3p ≶ α3m, then the condition αp (ϕ, ν) = αm (ϕ, ν) is valid for
ϕ ∈ 〈0, π/2〉 and for ν = νpm, where the function νpm = νpm (ϕ), along with the angle ϕpm,
mentioned below, which is determined by the condition αp (ϕ, ν)−αm (ϕ, ν) = 0 for α3p = α3m,
have the forms

νpm = arcsin

(√

α3m − α3p

(α1p − α1m) cos2 ϕ + (α2p − α2m) sin2 ϕ + α3m − α3p

)

,

ϕpm = arcsin

(√

α1m − α1p

α2p − α2m

)

. (49)

3. If α1p ≷ α1m, α2p ≶ α2m, α3p ≶ α3m, then the condition αp (ϕ, ν) = αm (ϕ, ν) is valid for
ϕ ∈ 〈0, ϕpm〉 and for ν = νpm.

4. If α1p ≷ α1m, α2p ≶ α2m, α3p ≷ α3m, then the condition αp (ϕ, ν) = αm (ϕ, ν) is valid for
ϕ ∈ 〈ϕpm, π/2〉 and for ν = νpm.

5. If α3p = α3m, then the following analysis is considered.

(a) If α1p ≷ α1m, α2p ≷ α2m, then the condition αp (ϕ, ν) = αm (ϕ, ν) is valid for ν = 0.

(b) If α1p ≷ α1m, α2p ≶ α2m, then the condition αp (ϕ, ν) = αm (ϕ, ν) is valid for ϕ = ϕpm

and for ν ∈ 〈0, π/2〉.
Let the plane x1x2 (see Fig. 2) in the component which is related to the subscript q1 be isotropic.

In case of this uni-axial anisotropy, we get α1q1
= α2q1

.
If ε′11tp (ϕ, ν) 6= ε′11tm (ϕ, ν) at T ∈ 〈Tf , Tr〉, then the function νpm = νpm (ϕ) and the angle ϕpm ∈

〈0, π/2〉 which both result from the condition βp (ϕ, ν) − βm (ϕ, ν) = 0 are determined by numerical
methods for a real two-component material (see Sec. 1.1). In case of ε′11tp (ϕ, ν) 6= ε′11tm (ϕ, ν) at
T ∈ 〈Tf , Tr〉, the condition βp (ϕ, ν) − βm (ϕ, ν) = 0 thus represents a transcendental equation
regarding the variables ϕ, ν ∈ 〈0, π/2〉.

If the spherical particles and matrix are isotropic and anisotropic, respectively, then we get
α1p = α2p = α3p = αp. Similarly, if the spherical particles and matrix are anisotropic and isotropic,
respectively, then we get α1m = α2m = α3m = αm.

The angle νpm thus defines the intervals ν ∈ 〈0, νpm) and ν ∈ (νpm, π/2〉 for which the conditions

αp ≶ αm and αp ≷ αm are valid, respectively. The determination of W
(ij)
cp and W

(ij)
cm then considers

the intervals νpm ∈ 〈0, νR〉, νpm ∈ 〈νR, ν∗〉, νpm ∈ 〈ν∗, π/2〉. The angle ν∗ = ν∗ (ϕ) which is given
by Eq. (1), and the angle νR = arctan (2R1/d) are shown in Fig. 6, where this figure also shows the
angle νpm for the interval νpm ∈ 〈ν∗, π/2〉.

On the conditions νpm ∈ 〈0, νR〉 and νpm ∈ 〈νR, ν∗〉, the determination of W
(ij)
cp = W

(ij)
cp (xij, ϕ,R1, v)

for xij ∈ 〈0, R1〉 and W
(ij)
cm = W

(ij)
cm (xij, ϕ,R1, v) for xij ∈ 〈R1, d/ (2cϕ)〉 is not presented due to a

range of this brochure. This determination is presented in the doctoral dissertation.
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The curve integral W
(ij)
cq = W

(ij)
cq (xij, ϕ,R1, v) (q = p,m) is then determined for the interval

νpm ∈ 〈ν∗, π/2〉 by the two following methods.

Method 1. This method of determination of W
(ij)
cp and W

(ij)
cm is based on an assumption that

the thermal-stress induced elastic energy accumulated in the cubic cell volume which is related to
νpm ∈ 〈ν∗, π/2〉 is released by the crack formation in the plane xixj in the spherical particle for
αp > αm or in the cell matrix for αp < αm.

Figure 6: The angles ν∗ = ν∗ (ϕ) (see Eq. (1)),
νR = arctan (2R1/d) along with the angle νpm

which is shown for the interval νpm ∈ 〈ν∗, π/2〉,
where xijp = R1 sin νpm. The coefficient cϕ =
cϕ (ϕ) is given by Eq. (1).

Figure 7: The abscissae P1P2, P2P3, P3P4, P5P6,
P6P7, P7P8, P9P10 along which the curve inte-
grals W

(ij),1
cp , W

(ij),2
cp , W

(ij),1
cm are determined for

νpm ∈ 〈ν∗, π/2〉 (see Eqs. (50), (51)). The abscis-
sae P1P2P3P4, P5P6P7P8 and P9P10 are related
to the plane xijxk (see Fig. 4c). The coefficient
cϕ = cϕ (ϕ) is given by Eq. (1).

With regard to Fig. 7, the curve integral W
(ij),1
cp = W

(ij),1
cp (xij, ϕ,R1, v) for xij ∈ 〈0, xijp〉 and

xij ∈ 〈xijp, R1〉, and the curve integral W
(ij),1
cm = W

(ij),1
cm (xij, ϕ,R1, v) for xij ∈ 〈R1, d/ (2cϕ)〉 are

derived as 4

W (ij),1
cp =

∫

P1P2

w(ij)
p dxk =

xk0
∫

0

w(ij)
p dxk, xij ∈ 〈0, xijp〉 , xijp = R1 sin νpm, xk0 = xij cot νpm,

W (ij),1
cp =

∫

P5P6

w(ij)
p dxk +

∫

P6P7

w(ij)
m dxk =

√
R2

1
−x2

ij
∫

0

w(ij)
p dxk +

xk0
∫

√
R2

1
−x2

ij

w(ij)
m dxk, xij ∈ 〈xijp, R1〉 ,

W (ij),1
cm =

∫

P9P10

w(ij)
m dxk =

xk0
∫

0

w(ij)
m dxk, xij ∈

〈

R1,
d

2cϕ

〉

. (50)

Method 2. This method is based on an assumption that the crack can be formed in the spherical
particle or cell matrix in the plane xixj in spite of the condition βp < βm or βp > βm, respectively.
The following analysis can then explain such paradoxical behaviour of the cracking which is observed
in a real two-component material [39]–[41]. This analysis results from an assumption that the release
of energy of a system considers ’minimal resistance’ of the system, i.e. the energy of a system is
released through ’minimal resistance’ of the system. Due to a range of this brochure, this analysis

4The superscripts 1 and 2 in W
(ij),1
cp , W

(ij),1
cm and W

(ij),2
cp are related to the method 1 and method 2, respectively.
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is determined for the spherical particle only. The analysis for the cell matrix is presented in the
doctoral dissertation.

Let the condition αp < αm be valid for ν ∈ (νpm, π/2〉. Let R
(jk),1
1cp = R

(jk),1
1cp (ϕ, v) represent a

critical particle radius for the crack initiation in the spherical particle in the plane xjxk. Let R
(jk),1
1cp =

R
(jk),1
1cp (ϕ, v) be determined by the curve integral W

(jk),1
cp = W

(jk),1
cp (xjk, ϕ,R1, v) for ϕ = ∠ (xj, xjk),

xjk ⊂ xjxk (see Eq. (47)). Let W
(jk),1
cp be determined by the method 1.

Let R
(ki),1
1cp = R

(ki),1
1cp (ϕ, v) represent a critical particle radius for the crack initiation in the spherical

particle in the plane xkxi. Let R
(ki),1
1cp = R

(ki),1
1cp (ϕ, v) be determined by the curve integral W

(ki),1
cp =

W
(ki),1
cp (xki, ϕ,R1, v) for ϕ = ∠ (xk, xki), xki ⊂ xkxi (see Eq. (47)). Let W

(ki),1
cp be also determined by

the method 1.
Let R

(ij),1
1cm = R

(ij),1
1cm (ϕ, v) represent a critical particle radius for the crack initiation in the cell

matrix in the plane xkxi. Let R
(ij),1
1cm = R

(ij),1
1cm (ϕ, v) be determined by the curve integral W

(ij),1
cm =

W
(ij),1
cm (xij, ϕ,R1, v) for ϕ = ∠ (xi, xij), xij ⊂ xixj (see Eq. (47)). Let W

(ij),1
cm be also determined by

the method 1.
Finally, let R

(ij),2
1cp = R

(ij),2
1cp (ϕ, v) represent a critical particle radius for the crack initiation in the

spherical particle in the plane xkxi. Let R
(ij),2
1cp = R

(ij),2
1cp (ϕ, v) be determined by the curve integral

W
(ij),2
cp = W

(ij),2
cp (xij, ϕ,R1, v) for ϕ = ∠ (xi, xij), xij ⊂ xixj (see Eq. (47)). With regard to Fig. 7,

the curve integral W
(ij),2
cp which is determined by the method 2 for xij ∈ 〈0, xijp〉 and xij ∈ 〈xijp, R1〉

have the form

W (ij),2
cp =

∫

P2P3

w(ij)
p dxk +

∫

P3P4

w(ij)
m dxk −

∫

P1P2

w(ij)
p dxk

=

√
R2

1
−x2

ij
∫

xk0

w(ij)
p dxk +

d/2
∫

√
R2

1
−x2

ij

w(ij)
m dxk −

xk0
∫

0

w(ij)
p dxk ≥ 0, xij ∈ 〈0, xijp〉 , xk0 = xij cot νpm

W (ij),2
cp =

∫

P7P8

w(ij)
m dxk −







∫

P5P6

w(ij)
p dxk +

∫

P6P7

w(ij)
m dxk







=

d/2
∫

xk0

w(ij)
m dxk −









√
R2

1
−x2

ij
∫

0

w(ij)
p dxk +

xk0
∫

√
R2

1
−x2

ij

w(ij)
m dxk









≥ 0, xij ∈ 〈xijp, R1〉 . (51)

Additionally, W
(ij),2
cp = W

(ij),2
cp (xij, ϕ,R1, v) is defined for such interval xij ∈ 〈xijp0, R1〉 ⊂ 〈0, R1〉

for which the condition W
(ij),2
cp ≥ 0 is valid, where xijp0 is determined by the condition W

(ij),2
cp = 0.

In case of the thermal stresses, W
(ij),2
cp represents an increasing function of xij ∈ 〈xijp0, R1〉.

If the conditions

R
(ij),2
1cp < R

(jk),1
1cp , R

(ij),2
1cp < R

(ki),1
1cp , R

(ij),2
1cp < R

(ij),1
1cm (52)

are simultaneously valid, then the crack is formed in the plane xixj in the spherical particle

• in spite of the fact that the condition αp < αm for ν ∈ (νpm, π/2〉 is valid,

• and in spite of the fact that the crack would be expected to be formed in the cell matrix
regarding αp < αm for ν ∈ (νpm, π/2〉.

The critical particle radius R
(ij),2
1cp which is a minimal value of the set

{

R
(ij),2
1cp , R

(jk),1
1cp , R

(ki),1
1cp , R

(ij),1
1cm

}

thus represents the ’minimal resistance’ through which energy of the cubic cell is released.
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5.2 Analytical model of energy barrier. The definition of the energy barriers Wbi = Wbi (xi),
Wbj = Wbj (xj), Wbk = Wbk (xk) which represent energy gradients along the axes xi, xk, xk, respec-
tively, is as follows. Let a solid continuum with a general shape shown in Fig. 8 be considered. Let
W =

∫

V

w dV be energy accumulated in the volume V of this solid continuum, and then we get

W =

xi2
∫

xi1

xj2
∫

xj1

xk2
∫

xk1

w dxi dxj dxk

=

xi2
∫

xi1

∫

Si

w dxi dSi =

xj2
∫

xj1

∫

Sj

w dxj dSj =

xk2
∫

xk1

∫

Sk

w dxk dSk, (53)

where the energy density w = w (xi, xj, xk) is represented e.g. by thermal-stress induced elastic
energy density. xi1, xi2; xj1, xj2; xk1, xk2 are integration boundaries related to the variables xi;
xj; xk, respectively. The surfaces Si, Sj, Sk in positions given by xi ∈ 〈x1i, x2i〉, xj ∈ 〈x1j, x2j〉,
xk ∈ 〈x1k, x2k〉 represent cross-sections of the solid continuum, where these surfaces are perpendicular
to the axes xi, xj, xk, respectively. As an example (see Fig. 8), the surface Si with the normal xi is
related to the plane x′′

j x
′′
k which is parallel to xjxk.

Figure 8: The solid continuum with a general
shape with the volume V , and with the surface
Si in a position given by xi ∈ 〈xi1, xi2〉, where the
difference xi2 − xi1 represents length of the solid
continuum along the axis xi. The surface Si with
the normal xi is a cross-section of the solid con-
tinuum. The cross-section is given by the plane
x′′

j x
′′
k which is parallel to the plane xjxk.

Figure 9: The energy barriers 1, 2, 3 with max-
imal values in the points A, B, C, respectively.
The energy barrier 2 exhibits the maximum in
the position x = b.

Consequently, Wbi = Wbi (xi) = ∂W/∂xi, Wbj = Wbj (xj) = ∂W/∂xj, Wbk = Wbk (xk) = ∂W/∂xk

which represent surface integrals related to Si, Sj, Sk, respectively, have the forms

Wbi =

xj2
∫

xj1

xk2
∫

xk1

w dxj dxk, Wbj =

xi2
∫

xi1

xk2
∫

xk1

w dxi dxk, Wbk =

xi2
∫

xi1

xj2
∫

xj1

w dxi dxj. (54)

This definition of an energy barrier, i.e. Wbi = ∂W/∂xi, Wbj = ∂W/∂xj, Wbk = ∂W/∂xk, is also
presented in [59].

In general, energy barriers influence motion of dislocations, magnetic domain walls, etc., where
a magnetic domain wall represents a front between magnetic domains with and without ordered
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magnetic moments [59]. As an example, a planar magnetic domain wall in a magnetic material is
shifted along the axis x from the position x = a to the position x = b due to the change ∆Hba =
Hb − Ha of the magnetic field intensity H (see Fig 9). As presented in Fig 9, the point B with the
position x = b represents a maximum of the energy barrier 2. Consequently, this magnetic domain
wall moves along the axis x to the position x = c at the constant intensity Hb = Hc. The wall is
then stopped by the energy barrier 3 which is higher than the energy barrier 2. The position change
∆xcb = c − b of the wall results in the change ∆Mcb of the magnetic moment M of the magnetic
material. Accordingly, ∆Mba related to ∆xcb = c−b results in a discrete change of the magnetization
hysteresis loop at zero change of H, i.e. for ∆Hcb = Hc−Hb = 0. This discrete change at the constant
intensity Hb = Hc induces a voltage impulse in a pickup coil. The voltage impulse is known as the
Barkhausen jump. Additionally, maximal values of the energy barriers 1, 2, 3 are reasons of the
coercivity of magnetic materials including magnetic multi-component materials [59].

Due to a range of this brochure, formulae for the energy barrier in the model systems (see Fig. 1)
are determined in the doctoral dissertation.

5.3 Analytical model of strengthening. The analytical model of the micro-strengthening σsi =
σsi (xi), σsj = σsi (xj), σsk = σsi (xk) and the macro-strengthening σsi, σsj, σsk along the axes xi, xj,
xk (i, j, k = 1,2,3; i 6= j 6= k) (see Fig. 8) is based on the following energy analysis.

Let a solid continuum with a general shape and with the volume V shown in Fig. 8 be considered.
Let the surface Si in a position given by xi ∈ 〈x1i, x2i〉 be a cross-section of this solid continuum,
where Si (xi) is an area of Si. The cross-section Si with the normal xi is related to the plane x′′

j x
′′
k

(see Fig. 8), where x′′
j x

′′
k ‖ xjxk. The surface Si is described by the coordinates xj ∈ 〈xj1, xj2〉 and

xk ∈ 〈xk1, xk2〉.
Let the micro-strengthening σsi = σsi (xi) along the axis xi which is required to be determined

within this analysis represent a normal stress acting on the surface Si. Additionally, let σsi = σsi (xi)
be constant regarding each point of the surface Si, i.e. σsi = σsi (xi) 6= f (xj, xk) is not a function of
xj ∈ 〈xj1, xj2〉 and xk ∈ 〈xk1, xk2〉.

Consequently, let the stress σsi = σsi (xi) induce the elastic strain εsii = εsii (xi) = siiσsi (xi) along
the axis xi. Accordingly, the elastic energy density Wσsi

= Wσsi
(xi) accumulated on the surface area

Si = Si (xi) has the form

Wσsi
= Wσsi

(xi) =
σsi εsii Si

2
=

sii Si σ
2
si

2
, sii =

1

Ei

, (55)

where Ei is the Young’s modulus along the axis xi.

Let σi = σi (xi, xj, xk) =
3

∑

n1 =1

an1i σ
′
n1n1

+
3

∑

n1,n2=1; n1 6=n2

an1i σ
′
n1n2

be a thermal stress which acts

along the axis xi in the solid continuum, where the term an1i σ
′
n1n2

represents a projection (’co-
ordinate’) of the stress σ′

n1n2
to a direction represented by the axis xi, and the coefficient an1i

(i, j, k, n1, n2 = 1,2,3) is given by Eq. (6). Let wi = wi (xi, xj, xk) = εii σi/2 = sii σ
2
i /2 be elastic

energy density which is induced by σi = σi (xi, xj, xk).
Accordingly, the thermal-stress induced elastic energy density Wi = Wi (xi) accumulated on the

surface area Si = Si (xi) is derived as

Wi = Wi (xi) =

∫

Si

wi dSi. (56)

With regard to a sign of the stress σsi = σsi (xi), the determination of the integral in Eq. (56) is
required to consider the following conditions:

1. If σi (xi, xj, xk) < 0 at a point with the coordinates (xi, xj, xk) on the surface Si, then wi =
wi (xi, xj, xk) at this point is considered to be −wi.

2. If σi (xi, xj, xk) > 0 at a point with the coordinates (xi, xj, xk) on the surface Si, then wi =
wi (xi, xj, xk) at this point is considered to be +wi.
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The micro-strengthening σsi = σsi (xi) along the axis xi which is determined by the condition

Wσsi
= Wi. (57)

The macro-strengthening σsi along the axis xi which represents a mean value of σsi = σsi (xi)
regarding the interval xi ∈ 〈x1i, x2i〉, are then derived as

σsi = σsi (xi) = ±
√

2 |Wi|
sii Si

,

σsi =
1

x2i − x1i

x2i
∫

x1i

σsi dxi =
1

x2i − x1i

√

2

sii

x2i
∫

x1i

±
√

|Wi|
Si

dxi, sii =
1

Ei

, (58)

where the signs ’+’ and ’-’ in Eq. (57) are considered for Wi > 0 and Wi < 0, respectively. Addition-
ally, the following conditions are considered:

3. If Wi (xi) > 0 in a position given by the coordinate xi, then the sign ’+’ in Eq. (58) is considered.

4. If Wi (xi) < 0 in a position given by the coordinate xi, then the sign ’-’ in Eq. (58) is considered.

Finally, the following analysis concerning a sign of σsi is considered:

5. If σsi < 0, then the macro-strengthening σsi represents a ’resistance’ against compressive
mechanical loading.

6. If σsi > 0, then the macro-strengthening σsi represents a ’resistance’ against tensile mechanical
loading.

With regard to the micro-/macro-strengthening along the axes xj and xk, the transformations
i → j, j → i, k → k and i → k, j → j, i → k of the subscripts i, j, k are considered in Eqs. (55)–(57),
respectively.

Due to a range of this brochure, formulae for the micro-/macro-strengthening in the model systems
(see Fig. 1) are determined in the doctoral dissertation.

5.4 Methods of lifetime prediction. The analytical-computational and analytical-experimental-
computational methods of the lifetime prediction are applicable to the three-component material
defined in Item 4, Sec. 1.1. This three-component material consists of grains with and without a
continuous component (envelope) on a grain surface. The grains with the continuous component
and the grains without the continuous component are identical or different regarding their crystal
lattices, and thus exhibit identical or different thermal expansion coefficients, respectively.

With regard to analytical modelling of the thermal stresses, this three-component material is
replaced by the multi-particle-envelope-matrix system (see Fig. 1b). The grains (with the radius R1

and with the volume fraction v) with the envelope with the thickness t correspond to the spherical
particles with the radius R1 of this model system. The grains without the envelope correspond to the
matrix of this model system. The parameters R1, t, v of the multi-particle-envelope-matrix system
represent microstructural parameters of the three-component material.

Each of the lifetime prediction methods considers a dependence of pi = pi (R1, t, v) (i= 1,2) on

these microstructural parameters, where pi = pi (R1, t, v) = (2/π)2 ×
π/2
∫

0

π/2
∫

0

pi dϕ dν represents a

mean value [58] of the function pi = pi (ϕ, ν,R1, t, v) of the variables ϕ ∈ 〈0, π/2〉, ν ∈ 〈0, π/2〉.
The radial stresses p1 = p1 (ϕ, ν,R1, t, v) and p2 = p2 (ϕ, ν,R1, t, v) act at the particle-envelope and
matrix-envelope boundaries, respectively. The integration is sufficient to be determined within one
eighth of the cubic cell, i.e. for ϕ ∈ 〈0, π/2〉 and ν ∈ 〈0, π/2〉. As analysed in Sec. 2.1, this is a
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consequence of symmetry of the multi-particle-envelope-matrix system due to the matrix infinity and
the periodical distribution of the spherical particles and the spherical envelopes (see Fig. 1b).

On the one hand, the following analyses concern a stress-strain state which is induced by the
thermal stresses. On the other hand, these analyses are also applicable to a stress-strain state with
the radial stress σ′

11q, tangential stresses σ′
22q, σ′

33q and shear stresses σ′
12q, σ′

13q in the spherical particle
(q= p) and cell matrix (q=m) which are required to fulfilled the following conditions, i.e. which
have the forms σ′

11p = −p1 f11p, σ′
11m = −p2 f11m; σ′

22p = −p1 f22p, σ′
33p = −p1 f33p, σ′

22m = −p2 f22m,
σ′

33m = −p2 f33m; σ′
12p = −p1 f12p, σ′

13p = −p1 f13p, σ′
12m = −p2 f12m, σ′

13m = −p2 f13m, where fijp and
fijm (i, j = 1,2,3) are functions of a position in the spherical particle and cell matrix, respectively.

Resistive and contributory effects of thermal stresses. In case of the multi-particle-matrix system,
the compressive or tensile radial stress p1 (R1, v) > 0 or p1 (R1, v) < 0 which acts at the particle-
matrix boundary corresponds to the condition βp < βm or βp > βm (see Eqs. (9)–(12)), respectively.

In case of the multi-particle-envelope-matrix system, the radial stresses p1 (R1, t, v) ≷ 0 and
p2 (R1, t, v) ≷ 0 can or need not correspond to the conditions βe ≷ βp and βm ≷ βe (see Eqs. (9)–
(12)), respectively. This fact results from a dependence of pi (i= 1,2) on R1, t, v.

Consequently, the radial stress pi = pi (R1, t, v) (i= 1,2) can exhibit zero values at R1ci, tci.
Accordingly, R1ci, tci represent such critical values of the microstructural parameters R1, t at which
pi is transformed from compressive to tensile or vice versa.

If p1 is compressive (i.e. p1 (R1, t, v) > 0), then radial and tangential thermal stresses in the
spherical particle (i.e. in the grain with the envelope on the grain surface) are also compressive. The
compressive radial and tangential thermal stresses in the spherical particle thus represent ’resistance’
against the compressive radial stress σr1 < 0. The radial stress σr1 acting at the particle-envelope
boundary is explained below.

Similarly, if p1 is tensile (i.e. p1 (R1, t, v) < 0), then radial and tangential thermal stresses in the
spherical particle (i.e. in the grain with the envelope on the grain surface) are also tensile. The tensile
radial and tangential thermal stresses in the spherical particle thus represent ’resistance’ against the
tensile radial stress σr1 > 0.

If p2 is compressive (i.e. p2 (R1, t, v) > 0), then radial and tangential thermal stresses in the cell
matrix (i.e. in the grain without the envelope on the grain surface) are compressive and tensile,
respectively. The compressive radial and tensile tangential thermal stresses in the cell matrix thus
represent ’resistance’ against the compressive radial stress σr2 < 0. The radial stress σr2 acting at
the matrix-envelope boundary is explained below.

Similarly, if p2 is tensile (i.e. p2 (R1, t, v) < 0), then radial and tangential thermal stresses in the
cell matrix (i.e. in the grain without the envelope on the grain surface) are tensile and compressive,
respectively. The tensile radial and compressive tangential thermal stresses in the cell matrix thus
represent ’resistance’ against the tensile radial stress σr2 > 0.

The critical microstructural parameters R1c1, tc1 for v ∈ (0, vmax〉 (see Sec. 1.3) thus represent
such critical values at which the radial and tangential thermal stresses in the spherical particle change
from positive (or negative) to negative (or positive). Accordingly, this resistive effect of the thermal
stresses in the spherical particle is transformed to a contributory effect or vice versa.

Similarly, R1c2, tc2 for v ∈ (0, vmax〉 (see Sec. 1.3) thus represent such critical values at which
the radial/tangential thermal stresses in the cell matrix change from positive/negative (or nega-
tive/positive) to negative/positive (or positive/negative). Accordingly, this resistive effect of the
thermal stresses in the cell matrix is transformed to a contributory effect or vice versa.

Due to mechanical loading mentioned below, the following analysis, which is based on the analysis
presented above, also considers an quasi-resistive effect.

Let the three-component material be loaded by mechanical loading. Let the mechanical loading be
represented by the stresses σ1 mech, σ2 mech, σ3 mech which act along the axes x1, x2, x3 (see Fig. 2). Let
σ1 mech, σ2 mech, σ3 mech induce the radial stresses σr1 = σr1 (ϕ, ν,R1, t, v) and σr2 = σr2 (ϕ, ν,R1, t, v)
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which act at the particle-envelope and matrix-envelope boundaries, respectively 5. Let the term
σri = σri (R1, t, v) (i= 1,2) represent a mean value of the function σri = σri (R1, t, v) of the variables
ϕ ∈ 〈0, 2π〉, ν ∈ 〈0, π〉.

Consequently, the condition |pi (R1, t, v)| = |σri (R1, t, v)| results in the dependence R1Ac =
fi (tAc, v, σri) between the variables R1, t of the function σri = σri (R1, t, v) with the parameter
v ∈ (0, vmax〉 (see Sec. 1.3).

Similarly, the condition pi (R1, t, v) = 0 results in the dependence R1Bc = fi (tBc, v) between the
variables R1, t of the function pi = pi (R1, t, v) with the parameter v ∈ (0, vmax〉.

Figure 10: A schematic illustration of the dependences
R1Ac = f (tAc, v, σr) and R1Bc = f (tBc, v) which re-
sult from the conditions |pi (R1, t, v)| = |σri (R1, t, v)|
and pi (R1, t, v) = 0, respectively, where f (tAc, v, σr) ≡
fi (tAc, v, σri), f (tBc, v) ≡ fi (tBc, v) for v ∈ (0, vmax〉 (see
Sec. 1.3).

Fig. 10 shows a schematic illustration of the dependences R1Ac = f (tAc, v, σr) and R1Bc =
f (tBc, v) for v ∈ (0, vmax〉 (see Sec. 1.3) which define the areas A, B, C, where f (tAc, v, σr) =
fi (tAc, v, σri), f (tBc, v) = fi (tBc, v) (i= 1,2).

The area A is characterized by such coordinates (R1, t) of the microstructural parameters R1, t for
which the thermal stresses exhibit the resistive effect against the mechanical loading, and additionally
|pi (R1, t, v)| ≥ |σri (R1, t, v)|, and pi (R1, t, v) × σri (R1, t, v) < 0.

The area B is characterized by such coordinates (R1, t) of the microstructural parameters R1, t
for which the thermal stresses exhibit the quasi-resistive effect against the mechanical loading, i.e.
|pi (R1, t, v)| ∈ 〈0, |σri (R1, t, v)|〉, and pi (R1, t, v) × σri (R1, t, v) ≤ 0.

The area C is characterized by such coordinates (R1, t) of the microstructural parameters R1, t
for which the thermal stresses exhibit the contributory effect regarding the mechanical loading, and
pi (R1, t, v) × σri (R1, t, v) > 0.

With regard to Fig. 10, material scientists are able to design and develop microstructure of
the three-component material with such microstructural parameters R1, t, v which result in this
thermal-stress induced resistance against required mechanical loading. The microstructure can be
thus tailored regarding the required mechanical loading.

Additionally, let the microstructure be time-dependent. If a time development of the microstruc-
ture is determined analytically or experimentally, then the time τc when the three-component ma-
terial exhibits the critical microstructural parameters R1c, tc for v ∈ (0, vmax〉 (see Sec. 1.3) can be
determined.

The determination of τc1 and τc2 which are related to p1 = p1 (R1, t, v) and p2 = p2 (R1, t, v),
respectively, is as follows.

Analytical-computational method. The transformation of the resistive effect of the thermal stresses
to contributory effect with respect to mechanical loading is considered for the determination of a

5Such radial stresses (i.e. σr1, σr2) can be determined by e.g. the Eshelby’s model. The Eshelby’s model and
its development [20,21,28,51] which are based on the Green’s function, ordinary Newtonian potential and biharmonic
potential define the disturbance of an applied stress-field in a solid continuum, where the applied stress-field is disturbed
due to the presence of inclusions in a solid continuum.
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method of the lifetime prediction. The lifetime prediction method is applicable to e.g. structural
steels which are used within high-temperature applications, e.g. superheater and reheater tubing
and piping in power plants. With regard to the high-temperature applications, these structural
steels are creep-resistant [60]–[64]. Creep-resistant steels represent multi-component materials which
exhibit changes of microstructure during years of an application at high temperature. In general,
these microstructural changes are a reason of a degradation of strength of creep-resistant steels. The
components of a power plant are usually designed with respect to a service life of 20 years (184 080
hours) [63,64].

The analytical-computational method represents a connection of analytical and computational
techniques. The analytical technique is based on the ’resistance-contribution’ transformation. The
computational technique is represented by a computational simulation of the time development
of microstructure at the temperature T . The temperature T is a parameter of this analytical-
computational method.

Microstructure of a creep-resistant steel thus exhibits changes during the time-temperature ex-
ploitation. An initial state of the microstructure at the beginning of the time-temperature exploita-
tion is characterized by the presence of grains with aperiodically distributed precipitates of more or
less defined shape. The grain matrix is ferritic (Feα-C) or austenitic (Feγ-C), with the substitutive
atoms Mn, Cr, Mo, W. The precipitates are represented by the carbonitride MX (M = Nb,V,Ti;
X = C,N), various carbide types of Cr, Mo, V, W, and inter-metallic phases (Laves and sigma
phases) [60]–[64]. As presented in [64], the ability of steels to resist creep deformation depends on
the presence of such precipitates in a matrix of grains.

Consequently, a final state of the microstructure of the structural steel at the end (regarding
the lifetime) of the time-temperature exploitation is characterized by the presence of grains with an
envelope on the grain surface as well as by the presence of grains without an envelope on the grain
surface.

The matrix of grains without the envelope and the matrix of grains with the envelope are ferritic
(Feα-C) or austenitic (Feγ-C). The envelope is represented by the carbides M23C6, M6C, and/or
inter-metallic phases (Laves and sigma phases) [60]–[64].

Microstructure of this final state of a creep-resistant steel thus corresponds to the microstructure
which is defined in Item 4, Sec. 1.1.

The lifetime prediction method determines the critical time τAc and τBc when the microstruc-
ture exhibits the critical parameters R1Ac, t1Ac and R1Bc, t1Bc, respectively, where τAc < τBc. The
determination of τAc, τBc is as follows.

Figure 11: The function F (R1, t, τ, T ) = 0 which is deter-
mined by a computational simulation represents the time
development of microstructure of the three-component
material defined in Item 4, Sec. 1.1. The radius R1 of
the grains which are covered by the envelope on their
surfaces, the thickness t of the component (envelope) on
the grain surface, and the time τ represent variables of
the function F (R1, t, τ, T ) = 0. The exploitation tem-
perature T (≡ Te) is a parameter of F (R1, t, τ, T ) = 0,
where T < Tr and Tr is relaxation temperature (see
Sec. 2.5). The function Fp (R1, t, T ) = 0 represents a
projection of F (R1, t, τ, T ) = 0 into the plane R1 − t.
The functions R1Ac = f (tAc, v, σr), R1Bc = f (tBc, v)
for v ∈ (0, vmax〉 (see Sec. 1.3) are shown in Fig. 10 ,
where f (tAc, v, σr) ≡ fi (tAc, v, σri), f (tBc, v) ≡ fi (tBc, v)
(i= 1,2).

As shown in Fig. 11, let the Cartesian system (ORtτ) with the functions R1Ac = f (tAc, v, σr) and
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R1Bc = f (tBc, v) in the plane R − t for v ∈ (0, vmax〉 (see Sec. 1.3) which are shown in Fig. 10 be
considered, and then we get f (tAc, v, σr) ≡ fi (tAc, v, σri), f (tBc, v) ≡ fi (tBc, v) (i= 1,2).

Let F (R1, t, τ, T ) = 0 in Fig. 11 represent a function which is determined by a computational
simulation of the time development of microstructure of the three-component material defined in
Item 4, Sec. 1.1. The grain radius R1, the thickness t of the component (envelope) on the grain
surface, and the time τ represent variables of the function F (R1, t, τ, T ) = 0. The exploitation
temperature T (≡ Te) is a parameter of the function F (R1, t, τ, T ) = 0, where T < Tr and Tr is
relaxation temperature (see Sec. 2.5). The F (R1, t, τ, T ) = 0 thus defines a time dependence of both
R1 and t at the exploitation temperature T .

Consequently, let the function Fp (R1, t, T ) = 0 represent a projection of F (R1, t, τ, T ) = 0 into
the plane R1 − t as shown in Fig. 11.

The points A and B with the coordinates (R1Ac, tAc) and (R1Bc, tBc) represent intersections of
Fp (R1, t, T ) = 0 with R1Ac = f (tAc, v, σr) and R1Bc = f (tBc, v), respectively, where f (tAc, v, σr) ≡
fi (tAc, v, σri), f (tBc, v) ≡ fi (tBc) (i= 1,2).

The substitution of R1 = f (tAc, v, σr) and R1 = f (tBc, v) to the function Fp (R1, t, T ) = 0
results in the conditions Fp (f (tAc, v, σr) , tAc, T ) = 0 and Fp (f (tBc, v) , tBc, T ) = 0, respectively.
The conditions Fp (f (tAc, σr) , tAc, T ) = 0 and Fp (f (tBc) , tBc, T ) = 0 with the variables tAc and tBc

are considered for the determination of the t-coordinates, tAc and tBc, of the point A and B in the
plane R1 − t, respectively.

Consequently, the substitution of the coordinates tAc and tBc to R1Ac = f (tAc, v, σr) and R1Bc =
f (tBc, v) results in the determination of the coordinates R1Ac and R1Bc of the points A and B,
respectively.

The substitution of the coordinates (R1Ac, tAc) and (R1Bc, tBc) to F (R1, t, τ, T ) = 0 results in
the condition F (R1Ac, tAc, τAc, T ) = 0 and F (R1Bc, tBc, τ, T ) = 0, respectively. The conditions
F (R1Ac, tAc, τ, T ) = 0 and F (R1Bc, tBc, τBc, T ) = 0 with the variables τAc and τBc are considered for
the determination of the time τAc and τBc, respectively, where τAc = τAc (v, σr), τBc = τBc (v).

Consequently, the intervals τ < τAc (v, σr), τ ∈ 〈τAc, τBc〉, τ > τBc defines the time τ which
is related to the resistive, quasi-resistive, contributory effects of the thermal stresses against the
mechanical loading, respectively. The intervals τ < τAc, τ ∈ 〈τAc, τBc〉, τ > τBc determine non-
critical, quasi-critical, critical time periods of the exploitation, respectively.

The critical time τAc and τBc is assumed to represent contribution to the total lifetime related
to the thermal-stress induced resistive effects of a three-component material. As analysed above,
τAc is determined for |p1 (R1, t, v)| = |σr1 (R1, t, v)| or |p2 (R1, t, v)| = |σr2 (R1, t, v)|, and then τAc →
τAc1 (v, σr1) or τAc → τAc2 (v, σr2), respectively, where τAci = τAci (v, σri) (i= 1,2). Similarly, τBc is
determined for |p1 (R1, t, v)| = 0 or |p2 (R1, t, v)| = 0, and then τBc → τBc1 (v) or τBc → τBc2 (v),
respectively, where τBci = τBci (v) (i= 1,2).

Finally, τAc min and τBc min which represent minimal values of the sets {τAc1, τAc2} and {τBc1, τBc2}
are considered to represent the lifetime regarding the ’resistance–(quasi-resistance)’ and ’(quasi-
resistance)–contribution’ transformations (see Fig. 10), respectively.

Analytical-computational-experimental method. The analytical-computational-experimental me-
thod represents a connection of an analytical model of the thermal stresses with computational
simulation of the time development of microstructure as well as with experimental results. The tem-
perature T is a parameter of this analytical-computational-experimental method. The determination
of the analytical-computational-experimental method is as follows.

Let the computational simulation be represented by a time development of the thickness t of the
component (envelope) on grain surfaces. Let this time development be represented by the function
t = g (τ), where τ = f (t) is an inverse function of t = g (τ). Let log τ = f (log t) be derived by the
Taylor series in terms of log t regarding the time interval τ ∈ 〈0, 200000〉 [hour]. Consequently, the
function log τ = f (log t) has the form

log τ =
n

∑

i=0

c
(τ)
i (log t)i . (59)
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The experimental results are represented by a time development of the radius R1 of the grains
which are covered by the component (envelope) on their surfaces. Let the dependence R1 − τ for
τ ∈ 〈0, 200000〉 [hour] be derived as

log R1 =
m

∑

j=0

c
(R1)
j (log τ)j . (60)

With regard to Eqs. (59), (60), we get

log R1 =
m

∑

j=0

c
(R1)
j

(

n
∑

i=0

c
(τ)
i (log t)i

)j

. (61)

An analytical model of the thermal stresses is represented by the functions R1Ac = f (tAc, v, σr)
and R1Bc = f (tBc, v) (see Fig. 10), strictly speaking by the functions log R1Ac = log [f (tAc, v, σr)]
and log R1Bc = log [f (tBc, v)], where f (tAc, v, σr) ≡ fi (tAc, v, σri), f (tBc, v) ≡ fi (tBc, v) (i= 1,2).
With regard to Eq. (61), and considering t → tAc, we get

log [f (tAc, v, σr)] −
m

∑

j=0

c
(R1)
j

(

n
∑

i=0

c
(τ)
i (log tAc)

i

)j

= 0. (62)

Similarly, considering t → tBc, we get

log [f (tBc, v)] −
m

∑

j=0

c
(R1)
j

(

n
∑

i=0

c
(τ)
i (log tBc)

i

)j

= 0. (63)

Consequently, the roots tAc = tAc (v, σr) and tBc = tBc (v) of Eqs. (62) and (63) are determined
by a numerical method. Substituting tAc = tAc (v, σr) and tBc = tBc (v) to Eq. (59), the critical time
τAc and τBc has the form

τQc = exp

[

(ln 10)
n

∑

i=0

c
(τ)
i (log tQc)

i

]

, Q = A,B. (64)

Finally, Equations (59) and (60) can be also determined from experimental results and a com-
putational simulation, respectively. The analysis concerning τAc min, τBc min and the sets {τAc1, τAc2}
and {τBc1, τBc2} is also considered for this analytical-computational-experimental method.

6 Conclusions and applications
This doctoral dissertation presents analytical models of thermal stresses and of thermal-stress

induced phenomena in components of two- and three-component materials (see Sec. 1.1). With
regard to the analytical modelling, these real multi-component materials with finite dimensions are
replaced by two- and three-component model systems with infinite dimensions (see Secs. 1.2–1.4), i.e.
multi-particle-matrix and multi-particle-envelope-matrix systems, respectively (see Figure 1). The
analytical determination of a thermal stress-strain state is based on a cell model which considers a
cubic cell (see Figure 1). The cell model is usually used in case of the analytical and computational
modelling of phenomena in periodic model systems [19]–[28]. Additionally, as presented in [28], the
case when an infinite matrix is considered within analytical modelling of phenomena in real multi-
component materials with finite dimensions is of particular interest for the mathematical simplicity of
analytical solutions. As presented in [28], such analytical solutions are assumed to exhibit sufficient
accuracy due to the size of material components (e.g. precipitates, envelopes) which is relatively small
in comparison with the size of macroscopic material samples, macroscopic structural elements, etc.

The thermal stresses which originate below relaxation temperature (see Sec. 2.5) during a cooling
process are a consequence of the difference in dimensions of the components. This difference is a con-
sequence of different thermal expansion coefficients and/or a consequence of the phase-transformation

33



induced strain which is determined in Sec. 2.5 for anisotropic and isotropic crystal lattices. This co-
efficient and strain are included in the coefficient βq for the spherical particle (q= p), the spherical
envelope (q= e) and the cell matrix (q=m) (see Eqs. (9)–(12)).

This cooling process is characterized by a homogeneous temperature change. The homogeneous
temperature change which is considered in this doctoral dissertation is then characterized by the con-
dition ∂T/∂r = ∂T/∂ϕ = ∂T/∂ν = 0, where T is temperature and (r, ϕ, ν) are spherical coordinates
(see Fig. 2).

The analytical modelling of the thermal stresses results from fundamental equations of solid
continuum mechanics which are represented by the Hooke’s law for an anisotropic and isotropic
continuum (see Eqs. (5)–(7)), and by the Cauchy’s, compatibility and equilibrium equations (see
Eqs. (2)–(4)) which are determined by the spherical coordinates (r, ϕ, ν) (see Figure 2). The ana-
lytical models of the thermal stresses are determined for the model systems which consists of either
anisotropic, or isotropic, or anisotropic and isotropic components (see Secs. 3.1, 3.2, 4.1–4.4). The
thermal stress-strain state in each component of the model systems is determined by several mutually
different solutions which fulfil the boundary conditions which are determined in Sec. 3.3. In case of
the cell matrix, mandatory and additional boundary conditions are determined (see Eqs. (32)–(37)).
Due to these different solutions, a principle of minimum total potential energy of an elastic solid
body [29] is then required to be considered (see Sec. 2.4).

Strictly speaking, such solutions or a combination of solutions are considered to exhibit minimum
total potential energy of the model systems (see Figure 1). As analysed in Sec. 2.4, the total potential
energy Wt of the model systems is represented by the deformation energy Wd. The deformation
energy of the model systems is represented by the thermal-stress induced elastic energy Wc which is
accumulated in the cubic cell, and then Wt = Wd = Wc

The analytical results of thermal-stress induced phenomena in this doctoral dissertation includes
analytical models of crack formation (see Sec. 5.1), of the energy barrier (see Sec. 5.2), of the
micro- and macro-strengthening (see Sec. 5.3) along with the analytical-computational and analytical-
computational-experimental methods of the lifetime prediction (see Sec. 5.4).

As presented in Sec. 5.2, the crack formation in the multi-particle-matrix system includes crack
initiation which is followed by crack propagation. With regard to the crack initiation, no mathe-
matically defined crack is present in this model system before the thermal-stress loading. This is
in contrast to the analytical and/or computational investigation in [33]–[38]. This investigation is
applied to a model system with a crack which is mathematically defined, e.g. a penny-shaped crack.
Strictly speaking, this mathematically defined crack exists in a model system before the loading of
the model system.

The crack formation analysis in Sec. 5.1 is based on the comparison of energy which is accumulated
in the cubic cell with energy for the creation of a new surface (i.e. a surface of a crack). This
comparison is used e.g. in [39]–[41]. The crack formation analysis then considers a curve integral of
the thermal-stress induced elastic energy density w (see Eqs. (50), (51)) along a curve in the cubic
cell. The condition (see Eq. (47)) which defines a limit state with respect to the crack initiation in
the cracking plane xixj (i, j = 1,2,3; i 6= j) in the spherical particle (q= p) or cell matrix (q=m) is

determined, where the limit state is thus defined by the critical particle radius R
(ij)
1cq . With regard

to the crack propagation at R1 > R
(ij)
1cq , the condition (see Eq. (48)) for the determination of a

position of the crack tip in xixj (see Fig. 4c) in components of the multi-particle-matrix system
is determined. Formulae (see Eqs. (44)–(46)) which define the crack shape in the plane xijxk (see
Fig. 4c) which is perpendicular to the cracking plane xixj in components of the multi-particle-
matrix system are also determined. These results concerning the crack propagation are valid for
ceramic components which are characterized by a high-speed crack propagation. Additionally, the
crack formation analysis concerning the Method 2 (see p. 24) explains paradoxical behaviour of the
cracking which is experimentally observed in a real two-component material [39]–[41].

In contrast to the crack propagation results, the determination of the limit state is applicable
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disregarding a ’character’ of components of the multi-particle-matrix system (ceramic=brittle, elastic,
elastoplastic components).

The energy barrier represents a surface integral of thermal-stress induced elastic energy density
over a surface in the cubic cell (see Eq. (54)). Due to a range of this brochure, formulae for the
energy barrier in the model systems (see Fig. 1) are determined in the doctoral dissertation.

In addition to experimental methods [42]–[44], strengthening of multi-component materials is also
investigated analytically and/or computationally. Such analytical and/or computational determina-
tion is based on e.g. the finite element methods, Orowan and modified Oldroyd models, a simulation
of dislocation dynamics [45]–[50].

As presented in Sec. 5.3, the micro- and macro-strengthening, σsi and σsi (see Eq. (58)), respec-
tively, along the axis xi (i= 1,2,3) (see Fig. 1) is also based on a surface integral of the thermal-stress
induced elastic energy density wi over a surface in the cubic cell (see Sec. 5.3). Additionally, within
this doctoral dissertation, the micro- and macro-strengthening is defined as thermal-stress resistance
against mechanical loading. In this case, wi = wi (xi) represents such elastic energy density which is
induced by the thermal stress σi = σi (xi) which act along the axis xi (see Sec. 5.3), where σsi repre-
sents a mean value of σsi = σsi (xi) for xi ∈ 〈0, d/2〉 in the cubic cell. Due to a range of this brochure,
formulae for the micro-/macro-strengthening in the model systems (see Fig. 1) are determined in the
doctoral dissertation.

With regard to the analytical modelling, the lifetime prediction methods (see Sec. 5.4) are based
on a transformation of the ’resistive’ effect of the thermal stresses to the ’contributory’ effect with
respect to mechanical loading. This transformation results in the analytical determination of critical
microstructural parameters (a radius of grains and thickness of an envelope which is segregated on
a surface of the grains). The lifetime prediction methods also consider results which are obtained by
a computational simulation of the microstructural parameters during a time-temperature-dependent
development of microstructure (the analytical-computational method) as well as experimental results
concerning this microstructural development (the analytical-computational-experimental method).

Additionally, the analytical models of the crack formation, of the energy barrier and of the
micro- and macro-strengthening along with the methods of lifetime prediction exhibit a general
validity. These analytical models and these lifetime prediction methods are then valid for the thermal-
stress induced elastic energy density as well as for energy density which is induced by any stresses
acting in the multi-particle-matrix and multi-particle-envelope-matrix systems. In case of the lifetime
prediction methods, conditions which are required with respect to this general validity are presented
(see p. 29). Due to a range of this brochure, illustrative examples of applications of the analytical
models of these phenomena to real engineering materials (superconductive and structural ceramics,
a creep-resistant steel) are presented in the doctoral dissertation.

Results of this doctoral dissertation are applicable within basic research (solid continuum me-
chanics, theoretical physics, materials science) as well as engineering practice.

With regard to the basic research, the analytical models of the thermal stresses in the model
systems with either anisotropic components, or isotropic components, or anisotropic and isotropic
components can be incorporated to the Eshelby’s model [51]. The Eshelby’s model and its devel-
opment [20,21,28,51] which are based on the Green’s function, ordinary Newtonian potential and
biharmonic potential define the disturbance of an applied stress-field in a solid continuum. The
applied stress-field (e.g. mechanical loading) is disturbed due to the presence of inclusions in a solid
continuum. This incorporation thus defines a stress-strain state in a multi-component material which
is loaded by thermal and mechanical stresses [28].

The analytical models of the thermal stresses can be incorporated into experimental and compu-
tational methods for the determination of residual stresses [65]–[67].

The analytical model of the thermal-stress induced energy barrier can be also incorporated into
analytical and/or computational models which are created by e.g. theoretical physicists, and which
describe an interaction of an energy barrier with dislocations or magnetic domain walls [68,69].

Similarly, the analytical model of the thermal-stress induced micro- and macro-strengthening can
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be also incorporated into analytical, computational or experimental models of strengthening.
The thermal stresses can be incorporated into these models in a form of the thermal-stress induced

field of stresses and/or strains, or in a form of the thermal-stress induced elastic energy density.
The same (i.e. this incorporation) is also valid for the analytical-computational-experimental

lifetime prediction methods which can be considered within other analytical, computational and
experimental techniques for the determination of the lifetime.

As presented in [39]–[41,52,70], material scientists often numerically determine a thermal stress-
strain state in a real two-component material by an analytical model which is determined for a one-
particle-matrix system. As presented in [52,70], this one-particle-matrix system with the particle
volume fraction v = 0 consists of an isotropic spherical particle and an isotropic infinite matrix.
However, real two- and three components materials are characterized by v > 0. The analytical
models in Chaps. 3,4 for the multi-particle model systems in Fig. 1, both with v > 0, thus enable to
numerically determine the thermal stress-strain state with respect to different values of the particle
volume fraction. Additionally, such numerical determination for the multi-particle model systems
with anisotropic and/or isotropic components is assumed to be more considerable in comparison with
numerical results for the one-particle-matrix system with isotropic components.

Concerning engineering practice, materials scientists and engineers are able to numerically deter-
mine the limit state (the critical particle radius) with respect to the crack initiation. Consequently,
this numerical determination can be helpful for the determination of ’suitable’ heat treatment pa-
rameters. These ’suitable’ heat treatment parameters are expected to lead to non-critical radii of
precipitates (particles) in microstructure of real two-component material of the precipitate-matrix
type (see Sec. 1.1).

Materials scientists and engineers are also able to numerically determine the lifetime of creep-
resistant steels by the analytical-computational and analytical-computational-experimental predic-
tion methods. This lifetime is related to the transformation of the resistance effect to the contributory
effect of the thermal stresses with respect to mechanical loading. This numerical determination re-
quires experimental and/or computational determination of all material components and/or phases
which create the envelope on a surface of grains. Additionally, the volume fraction of each of these
material components and/or phases are also required to be experimentally and/or computation-
ally determined. These volume fractions are then considered within a numerical determination of
elastic moduli and a thermal expansion coefficient of this multi-component envelope. Finally, this
’thermal-stress induced’ lifetime represents a part of total lifetime.
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Chemické listy 105 (2011) 520–522 (IF: 0.62).

42


