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Kapitola 1

Uvod

1.1 Historie a motivace

Dnesni predstavy a poznatky o vnitini strukture protonu se zacaly postupné rysovat
v Sedesatych a sedmdesatych letech minulého stoleti. Na konci Sedesatych let byla
ve SLACu (Stanford Linear Accelerator Center, USA) ziskdna experimentalni data
vztahujici se ke srdzkam vysokoenergetickych elektroni (20 GeV) s protony. Princip
experimentu je schematicky zndzornén na obrazku [I.1 Soubor experimentélnich dat
v podstaté spocival v tom, Ze se u kazdého rozptyleného elektronu soucasné urcila
energie, kterou pri srazce ztratil, a thel, o ktery byl srazkou odchylen. Z téchto dat se
stanovil prislusny diferencialni G¢inny priifez procesu a z néj nasledné i tzv. strukturni
funkce. Jsou to invariantni veli¢iny, které maji pro diskusi o vnitini strukture protonu
(i dalsich hadront) zcela fundamentélni vyznam. Ze strukturnich funkei lze do urcité
miry rekonstruovat vnitini obraz protonu. Jejich teoretickd analyza ukazala, ze elektron
se uvnitt protonu nechova jako pri prichodu homogennim prostiedim, nybrz tak, jakoby
v nitru protonu narazel na jakési tvrdé castecky. Ze strukturnich funkei se dalo vy¢ist
i to, Ze tyto ¢astecky maji s nejvétsi pravdépodobnosti spin 1/2.

K névrhu modelu protonu (a neutronu), v némz jsou pritomny diracovské Castice,
které stoji v cesté prochéazejicim elektrontim, prispél predevsim americky fyzik R. Fey-
nman [1]. Ukazalo se, Ze tyto ¢astice — Feynman je pracovné nazval partony — vlastné
odpovidaji kvarktm, jejichz realna existence byla do té doby spojena s velikym otaz-
nikem. Analyza strukturnich funkeci déale ukézala, ze uvnitf nukleonu jsou spolecné
s kvarky i gluony — castice zprostredkovavajici vzajemnou interakci a vazbu kvarkt
(glue=lepidlo). Kvarkova struktura byla teoreticky predpovézena zhruba jiz o pét let
diive, v roce 1964 (nezavisle na sobé M. Gell-Mannem a G. Zweigem). Hypotéza kvark,
ktera se do té doby opirala predevsim o abstraktni a estetické argumenty, se proménila
v realitu. Zminény experiment ve SLACu tak oteviel novou kapitolu ve fyzice. Jednalo
se o0 objev, za ktery byla v roce 1990 udélena Nobelova cena (R. Taylor, H. Kendall,
J. Friedman) [5].
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PROTON S

Obrazek 1.1: Svazek vysokoenergetickych elektronti prostupuje tercikem. Pti srazce
s protonem se elektron vychyli z pivodniho sméru letu o thel 6 a ztrati ¢ast své
puvodni energie (AFE).

Na obrazku [1.2] je zndzornén proces srazky elektronu s protonem ve zjednoduseném
obrazu kvark-partonového modelu (QPM) navrzeném Feynmanem. V tomto zjednodu-
Seni se vlastné jednd spise o srazku s jednim kvarkem uvnitt protonu nez s protonem
jako takovym. S timto detailem souvisi nékolik velmi dilezitych momenti:

1) Elektron i kvark maji elektricky nédboj, proto na sebe pusobi elektromagnetickymi
silami. V jazyce kvantové teorie to znamend, ze mezi nimi dochazi k predani fotonu,
ktery je na obrazku znazornén vlnovkou. Elektromagnetické procesy obecné umime
v kvantové teorii vypocitat s neobycejnou presnosti. Pro ziskdni obrazu uvnitt protonu
je v této souvislosti diilezité predevsim to, ze umime velmi presné vypocitat, co se stane
s elektronem, ktery se prostrednictvim fotonu stretne s kvarkem.

2) Proc¢ vlastné bylo tfeba mit pro experiment ve SLACu elektrony s tak vysokou
energii? Duvod je jednoduchy, staci si pripomenout, za jakych okolnosti prestava fun-
govat obycejny opticky mikroskop. Nelze jim vérné zobrazit objekty, jejichz rozméry
jsou srovnatelné ¢i jesté mensi nez je vlnova délka viditelného svétla. I kdyz je nas
obraz vnitiku protonu ziskavan trochu jinou technikou, pro vlnovou délku fotonu plati
stejné pravidlo: Chceme-li obraz protonu ziskat v dostatecném rozliseni, musi byt jeho
vlnova délka podstatné mensi nez je jeho rozmér. A protoze respektujeme kvantovou
mechaniku, musime dodat, ze vinova délka fotonu A je nepiimo timérna jeho energii
E;\=h/E, kde h je Planckova konstanta. S pomoci tohoto vztahu si mizeme vypo-
¢itat, ze k tomu, aby vinova délka fotont byla nékolikrat kratsi nez je rozmér protonu
t.j. Tadové 10712 cm, je zadouci, aby jejich energie byla alesponi nékolik GeV. Protoze

energie fotonl jde ve zminéném experimentu na tukor energie elektronu, potfebujeme
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Obrazek 1.2: Vysokoenergeticky elektron pronika do elektromagnetického pole kvarkt

uvnit? protonu. Dochézi k vyméné fotonu mezi elektronem a nékterym z kvark.

svazek elektronii s energii jesté vyssi. A takovou energii elektrony ve SLACu spolehlivé
mély, proto podminka nutna k tomu, abychom kvarky uvnitt protonu ,vidéli“ byla
splnéna. A obracené, pri snizovani energie elektroni kouzlo s kvarky zmizi a obraz pro-
tonu se scvrkne na pouhou tecku bez jakékoli dalsi struktury ,,uvniti“. Z téchto divodu
rezim rozptylu elektront (a dalsich leptont, mionu ¢i neutrin) na nukleonech, pfi némz
se projevuje jejich kvarkova struktura, dostal nazev ‘Deep inelastic scattering’ (DIS).
Jde vlastné o proces, v jehoz prvnim kroku dojde k pruzné srazce leptonu s kvarkem
jak naznacuje obrazek [I.2] V druhém kroku odrazeny kvark ,fragmentuje* na hadrony,
zatimco stav leptonu se od srazky s kvarkem jiz neméni.

3) Proton i elektron mohou mit projekci spinu do zvoleného sméru +1/2; tim se
definuje jejich polarizace. Zvlasté dulezité jsou pritom dva sméry; jednak smeér, ve
kterém svazek elektrontt miii k terci s protony (tzv. podélna polarizace), a jednak smér
v nékteré kolmici ke svazku (pfiénéd polarizace). V obou téchto smérech elektron a
proton mohou byt polarizovany souhlasné nebo opacné. Kiivky rozdéleni rozptylenych
elektronii se v téchto pripadech lisi a jejich rozdily, tzv. spinové asymetrie, jsou velmi
dtlezitym klicem. Z téchto asymetrii lze totiz stanovit spinové strukturni funkce, které
obsahuji informaci o tom, jak spin protonu souvisi se spiny kvark, jimiz je tvoten.

Soucéasti obrazu nukleonu je i vzajemné plisobeni kvarkt prostrednictvim gluoni
v souladu s teorif silnych interakei, kvantovou chromodynamikou (QCD). Podrobnéjsi
uvod do problematiky zahrnujici zminéné pojmy jako partonovy model, DIS, strukturni
a distribucni funkce lze najit naptiklad v klasickych uc¢ebnicich [1]- [3] nebo v u¢ebnim
textu [4]. Rigor6zni piistup k partonovému modelu s QCD korekcemi a k pojmum

nepolarizovanych a polarizovanych strukturnich funkei lze nalézt v [6]. S nejnovéjsimi
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experimentalnimi a teoretickymi poznatky se lze seznamit ve sbornicich pravidelnych
konferenci, naprt. [7,8].
S nastinénou problematikou souvisi i téma predlozené disertacni prace, jejimz za-

kladem jsou dvé casti:

A. Experimentalni cast: Méreni strukturnich funkci v experimentu BCDMS

Tato ¢ast pojednava o experimentalnich vysledcich, na jejichZz zpracovani jsem se
podilel v experimentalnim tymu BCDMS béhem svého jednoro¢niho pobytu v CERN
v roce 1986 a v nasledujicim obdobi i v Praze nebo béhem kratkodobéjsich pobyti
v CERN. Konkrétné se jednéa predevsim o presné stanoveni nepolarizovanych struktur-
nich funkef Fy(z, Q?) méfenych na terc¢ich naplnénych kapalnym vodikem nebo deute-
riem a umisténych ve svazku vysokoenergetickych mionii. V dalsim kroku je provedena
analyza strukturni funkce protonu z hlediska naruseni skalovani a srovnanim s predpo-
veédi poruchové QCD je stanoven fundamentalni parametr Agep. Dilezitym vysledkem
je rovnéz ziskani strukturni funkce nukleonu mérené na terci Fe. Tato strukturni funkce
v kombinaci se strukturni funkci zméfenou na deuteriu umoznuje stanovit efekt pro-
stfedi jadra na rozdéleni kvarka v nukleonu (tzv. EMC efekt). Podkladem pro tuto
prvni ¢ast disertacni prace jsou publikace |A1]— [A4].

B. Teoreticka cast: Polarizované a nepolarizované strukturni funkce v ko-
variantnim QPM

V této ¢asti je rozpracovana kovariantni verze partonového modelu. Zakladnim vy-
chodiskem naseho pristupu jsou pozadavky symetrie:

i) relativistickd kovariance

ii) sférické symetrie nukleonu (3D hybnosti kvarkiu jsou v klidovém systému nukle-
onu popsany rotacné symetrickym pravdépodobnostnim rozdélenim)

Tyto pozadavky se neuplatnuji ve standardni formulaci partonového modelu, v tom
spo¢iva hlavni rozdil mezi obvyklym a nasim ptistupem. Zatimco v ptipadé nepolari-
zovanych strukturnich funkci tento rozdil nema prilis podstatné dusledky, v pripadé
spinovych strukturnich funkci jsou dusledky zcela zasadni. Podkladem pro tuto cast
disertacni préace jsou publikace [A5]— [A13]. V ¢lancich [A5]— [A9] je postupné formulo-
vana konstrukce modelu a jsou demonstrovany vlastnosti strukturnich funkei Fi, Fs, g1
a go, které z modelu vyplyvaji. Dilezitou soucasti této konstrukce je korektni zapocteni
vnitiniho pohybu kvarki. Ve spolupréci se spoluautory ¢lanku |[A10]— [A13] byl model
déle rozsiten o popis dalsich strukturnich (distribu¢nich) funkei, které jsou v soucas-
nosti v riznych teoretickych a experimentalnich pristupech predmétem intenzivniho
vyzkumu. Pribyvaji totiz experimentalni data, jejichz interpretace se neobejde bez
predpokladu o vnitinim pohybu kvark. Jde naptiklad o asymetrii v produkci hadronti,
kterd je vztazena ke sméru polarizace tercového nukleonu [9]— [15]. Pfedpoklad o vniti-
nim pohybu je rovnéz nevyhnutelny pro vyjasnéni role orbitalntho momentu kvarki.
Jde o poznatky, které zasadnim zptsobem prispivaji k hlubsimu pochopeni 3D struk-

tury nukleonti.
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1.2 Notace a zakladni veliciny

V préaci uzivame standardni notaci kinematickych veli¢in. Symboly
PE(Po,Pl,PQ,Pg), SE(S@,S1,S2,53), M = \/]D2 (11)
reprezentuji ¢tyfimpuls, spinovy vektor a hmotnost nukleonu. Symboly

p = (po,p1,p2,03), 4= (90,01, G2,q3), m= \/25 (1.2)

reprezentuji ¢tyrimpulsy kvarku a fotonu, m je hmotnost kvarku. P1i interakci elektronu
(nebo mionu) s kvarkem v nukleonu se predpoklada priblizeni jednofotonové vymeény.

Velmi dulezitou roli hraji invariantni veli¢iny

T = Q—Q, Q? = —¢> (1.3)
2Pq
Oba invarianty lze pro kazdou udélost DIS uréit z kinematiky rozptyleného leptonu.
Po zanedbani hmoty leptonu plati

0 2EE' 0
2 /a2 )

~ 4FE sin” - = —————sin” = 1.4
© Yy TTME-p)TT 2 (14)
kde E(E') je energie leptonu pred a po rozptylu, € je uhel rozptylu. Tyto veli¢iny se
vztahuji ke klidové soustavé nukleonu. Z jejich rozdéleni se stanovi diferencialni i¢inny

prurez a z néj lze pak extrahovat strukturni funkce:

d?*c

drdQ)?

které jsou skalarnimi funkcemi obou invariantnich proménnych. Poznamenejme, Ze pro

— I, Fy, g1, 92, (1.5)

ziskani polarizovanych funkci gy, g2 je tfeba provést dvoji méreni tc¢inného prifezu,
v konfiguracich se souhlasnymi a opacnymi spinovymi polarizacemi leptonu a nukleonu.
Veli¢inu z (tzv. Bjorkenova proménnd) lze v kinematické oblasti

Q* > AM*2? (1.6)
nahradit zlomkem N
Po T+ P1
1.7
Ly op (1.7)

ktery lze interpretovat jako podil impulsu daného kvarku na impulsu nukleonu — v sou-
stavé v niz je impuls protonu velky (uziva se termin ‘infinite momentum frame’, IMF)
a ve schematu, v némz se priéna hybnost kvarku zanedbava. Proménna se obvykle
nazyva ‘light-cone fraction” a hraje diilezitou tlohu v teorii a fenomenologii DIS. Pri-
bliznd rovnost parametru z vyjadireného vztahy nebo hraje zcela klicovou
roli pti formulaci QPM. Tato rovnost dava jednoduché propojeni mezi kinematikou
elektronu po rozptylu (Brojkenovo x se vypocte z tthlu 6 a energie E’) a kinematikou
kvarku pred rozptylem (proménna x je dana vyrazem, ktery zavisi na komponentéach
hybnosti kvarku). Podminka ((1.6) neni nikterak extrémnim pozadavkem, v dalsich
uvahéach predpokladame jeji splnéni.



Kapitola 2

Méreni strukturnich funkci
v experimentu BCDMS

2.1 Experiment

Po experimentech ve SLAC prirozené nasledoval mimoradny zajem poznatky o DIS déle
experimentalné i teoreticky prohlubovat. Jednim z experimentii, které nasledovaly, byl
experiment BCDMS (‘BCDMS Collaboration’ — nézev je zkratka zicastnénych labo-
ratoii Bologna, CERN, Dubna, Mnichov, Saclay). Spoleény projekt se uskutecnil na
mionovém svazku urychlovace SPS v CERN a byl téz znam jako experiment NA4,
zkratka souvisi s umisténim prislusné experimentalni haly: NA=North Area. Navrh se
zrodil v roce 1974, ke schvéleni experimentu v CERN doslo v roce 1975, konstrukce
probihala v letech 1976-1978 a data se pak nabirala do roku 1985. V néasledujicich
letech dale probihala jejich fyzikalni analyza. Detailni popis aparatury je uveden v sa-
mostatnych ¢lancich [17].

Zakladem aparatury byly toroidalni magnetické segmenty na bazi zeleza ve stavu
blizkém k magnetickému nasyceni, mezi nimiz byly rozmistény scintila¢ni detektory
a soutradnicové proporcionalni komory s rozliSenim 4 mm. Primér magnetickych seg-
mentt byl 2.75 m a celkova délka spektrometru dosdhla 40 m. Ter¢ s néplni (Ha, Do, Fe)
byl umistén na ose spektrometru v jeho predni ¢asti. V tomto usporadani dochazi k po-
hlceni vétsiny sekundarnich hadronti v Zeleznych segmentech, které jsou vsak prichodné
pro rozptylené miony. Z tdaji v detektorech bylo mozné rekonstruovat jejich trajekto-
rie, zejména thel 0 a energii £’ a z nich dale ur¢it odpovidajici invarianty z, Q2. Pro
stanoveni odpovidajiciho diferencialniho prurezu bylo tfeba presné stanovit akceptanci
celé aparatury jako funkci obou invariantii. Tato tloha byla fesena metodou Monte-
Carlo, pri niz probihala detailni simulace priichodu mionti celou aparaturou. Jednalo

se o tulohu, ktera na tehdejsi vykon pocitact kladla mimoradné naroky.
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2.2 Strukturni funkce protonu a deuteronu

Podrobné vysledky protonovych strukturnich funkci Fy a F; méfenych s vysokou sta-
tistikou ve svazcich mionu p* s energiemi 100, 120, 200 a 280 GeV jsou uvedeny
v praci [Al], viz ¢ast 2.2.1. Poznamenejme, Ze v této praci se uvadéji hodnoty funkei Fh
a R, tento par je vSak ekvivalentni paru funkci F» a F;. Funkce R vlastné vyjadiuje od-
chylku od relace Callan-Gross Fy/Fy = 2z, ktera plati v partonovém modelu a o niz se
jesté zminime v ¢asti[3.2] Tato odchylka neni nijak dramatickd a roli hraje jen v oblasti
mensich x. Posloupnost energii svazku méa dvoji cil, jednak umoznuje stanoveni dvojice
strukturnich funkei (jedna energie by vedla k jedné rovnici o dvou nezndmych) a jed-
nak rozsifuje kinematickou oblast definovanou proménnymi z, Q*. Strukturni funkce
ziskané s vysokou presnosti tak pokryvaji sirokou oblast,

0.06 < z < 0.80, 7 GeV? < Q2 < 260 GeV?,

kterd byla zasluhou dalsich experimentt déle postupné rozsitovana.

U zmérené strukturni funkce F5 lze na prvni pohled pozorovat velmi dulezitou
vlastnost, tzv. naruseni skalovani. Tim je minéna skutecnost, Zze funkce slabé zavisi na
proménné Q2. Tato zavislost je pi{znakem toho, Ze kvarky nejsou volnymi ¢asticemi, ale
ze jejich chovani uvniti protonu je fizeno zdkony QCD. Soucasné vSak poznamenejme,
ze uplnou zavislost experimentalné zmétenych strukturnich funkei na obou promén-
nych z,Q? dosud neumime v rdmci QCD poéitat. Umime ale s pomoci pertubative
QCD (pQCD) velmi dobre interpretovat a analyzovat zavislost strukturni funkce Fj
na proménné Q2. Takovou analyzu jsme provedli s nadi protonovou strukturni funkei
v préaci |A2], viz ¢ast 2.2.2, jejimz vysledkem bylo predevsim stanoveni QCD parametru
Agep.

Dalsim velmi diilezitym vysledkem experimentu BCDMS bylo zméfeni strukturnich
funkei F, a Fi(R) s ter¢em naplnénym kapalnym deuteriem, vysledek tedy odpovidal
sou¢tu nebo prumeéru ze strukturnich funkei protonu a neutronu [A3], viz ¢ast 2.2.3. Je
podstatné, ze toto méreni bylo provedeno v identickych podminkach jako méreni na vo-
dikovém terci, vysledky lze proto kombinovat a urcit z nich strukturni funkce neutronu.
Pro globalni QCD analyzu zaloZzenou na partonovém modelu, jejimz cilem je stanoveni
distribuénich funkei kvarka u a d a jejich antikvarka v protonu (a neutronu), je nutna
znalost strukturnich funkei obou nukleonti. Pti separovani distribu¢nich funkei se pred-
poklada izotopicka invariance mezi protonem a neutronem, coz znamena, ze zaména
p = n je provazena zaménou uP = d" a dP = u", coz znamena, ze distribuce kvarku
u, d a jejich antikvark v protonu je shodné s distribucemi d, u a jejich antikvarkt v ne-
utronu. Protoze distribuc¢ni funkce vstupuji do strukturnich funkci s vahami danymi
kvadraty naboju odpovidajicich kvarki, 1ze z kombinace strukturnich funkei protonu
a neutronu urcit uvedené distribuc¢ni funkce, které do nich vstupuji. Kvarky v a d jsou
v protonu a neutronu valentnimi kvarky, proto jejich distribuéni funkce dominuji. Jejich

antikvarky vystupuji pouze mezi ,motskymi* kvarky (sea quarks). V obecném pripadé
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je tfeba vzit do uvahy, Ze mezi motrskymi kvarky nukleonii vystupuji i virtualni pary
dalsich, tézsich kvarkl, predevsim ss. NaruSeni skalovani pro deuteron rovnéz odpo-
vida predpovédi pQCD. Vysledkem analyzy tohoto naruseni byl opét parametr Agep,
jehoz hodnota velmi dobte souhlasi s hodnotou ziskanou v predchozi praci z protonové
strukturni funkce.

Zméiené hodnoty strukturnich funkei Fy(z, Q?) protonu a deuteronu ve vyse uve-
dené kinematické oblasti predstavuji pravdépodobné nejvyznamnéjsi vysledky experi-
mentu BCDMS. Tvori soucast naseho dnesniho obrazu protonu a deuteronu zprostred-
kovaného strukturnimi funkcemi, na obrazcich a jsou uvedeny s navazujicimi
hodnotami namérenymi v pozdéjsich experimentech. Oba obrazky jsou prevzaty z Re-
view of Particle Physics [16], v prvém jsme BCDMS hodnoty pro lepsi viditelnost
barevné zvyraznili.
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Obréazek 2.1: Strukturni funkce protonu Fy zméfenéd v experimentech H1 [19], ZEUS
[20], BCDMS [A1], NMC [22], E665 [21] a SLAC [23].
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Obrazek 2.2: Strukturn{ funkce deuteronu Fy zméfena v experimentech BCDMS [A3],
NMC [22], E665 [21], SLAC [23).
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Table |

d’c _ 4o’ ) Q? + V2 E?+ Q? Kinematic ranges and number of events after all cuts at the four

szdx— Q“x y 4E? 2E2[R(x,Q2)+ 1] beam energies.
2
F.(x. 0? Beam energy Q* range X range Number of
XF(x Q%) (1) (GeV) (GeV?) events
. . »

where E is the energy of the incident beam, Q< the 100 - 80 0.06-0.80 530000
squared four-momentum transfer betw.een the muon 120 8-106 0.06-0.80 330000
and the proton, and x and y are the Bjorken scaling 200 16-150 0.06-0.80 770000
variables. This cross section depends on two struc- 280 30-260 0.08-0.80 180000

ture functions F, and R, where R= o/ o+ is the ration
of absorption cross sections for virtual photons of
longitudinal and transverse polarization. R is related
to F, and to the longitudinal structure function F; by

R(x, Q%)

_ Fu(x, Q%)
T (L+4Mx2/ Q) Fy(x, Q) = F(x, 0))

(2)

where M is the mass of the proton.

The data were collected at the CERN SPS muon
beam with a high-luminosity spectrometer which is
described in more detail elsewhere [1]. It consists of
a 40 m long segmented toroidal iron magnet which is
magnetized close to saturation and surrounds a 30 m
long “internal’” liquid hydrogen target. The iron ab-
sorbs the hadronic shower after a few meters and the
surviving scattered muon is focused towards the
spectrometer axis. The toroids are instrumented with
scintillation trigger counters and multiwire propor-
tional chambers. A 10 m long “external”target in front
of the spectrometer magnet extends the acceptance of
the apparatus to smaller angles, i.e. to smaller values
of x and Q?, than are accessible with the internal tar-
get. Four hodoscopes along the spectrometer axis de-
tect the incoming muons and measure their trajecto-
ries. The momentum of the incident muon is
measured with a spectrometer consisting of an air-
gap magnet and another four scintillator hodoscopes
upstream of the apparatus.

The results presented here are based on 1.8 X 10°
reconstructed events after all cuts, recorded with pos-
itive muon beams of 100, 120, 200 and 280 GeV en-
ergy. The kinematic ranges and data samples are
summarized in table 1. The data analysis is similar to
the one performed by our Collaboration in an earlier
experiment using a carbon target [2-4]. A more de-
tailed account of this analysis can be found in ref. [5].
The principal difference between this and the carbon

486

target experiment i1s due to the additional external
target. For events originating from the internal tar-
get, the geometrical acceptance is greater than 65%
and is rather flat in the kinematic region x> 0.25 and
Q*/2ME=>0.10. For events from the external target,
the acceptance depends on the position of the inter-
action vertex along the beam direction; only data
points with an acceptance larger than 50% were re-
tained for the analysis. The structure functions were
evaluated separately for the two target regions. The
background from target—wall interactions was deter-
mined from special empty target runs and was sub-
tracted from the data. At all beam energies, the data
from external and internal target were found to be in
statistical agreement and were combined for the sub-
sequent analysis. Radiative corrections were applied
using the calculations of ref. [6]. The error on F>(x,
Q%) from uncertainties on these corrections is esti-
mated to be smaller than 1%.
The principal sources of systematic errors in the
data are uncertainties in
- the calibration of the incident beam energy (AE/
E<0.15%),
— the calibration of the spectrometer magnetic field
(AB/B<0.15%),
— corrections for the energy loss ¢ of muons in iron
[7] (Ae/e<1%),
- corrections for the finite resolution X of the spec-
trometer (AX/2<5%),
— the relative cross section normalization of data
taken at different beam energies (1%),
- the absolute cross section normalization (3%).
Most of the results presented in this and a follow-
ing paper [8], especially those on R and on the com-
parison of scaling violations to QCD predictions, are
affected by the uncertainty on the relative but not on
the absolute cross section normalization. Systematic
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errors originating from uncertainties in the detector
efficiencies (0.5%) are small due to the redundancy
in the experimental apparatus. A detailed discussion
of the Monte Carlo simulation used to compute the
acceptance and the resolution of the apparatus, of the
treatment of the systematic errors, and of the calibra-
tions undertaken to minimize them can be found in
refs. [2,5].

According to eq. (1) the measured cross section
depends on the two functions R=0¢y /61 and F,. Both
functions can be separated by comparing cross sec-
tions at the same value of x and 02, measured at dif-
ferent beam energies. In this analysis we have chosen
to compare the values of four test F,’s, called F% (R),
obtained at the four beam energies assuming trial
values for R. The experimental value of R was then
obtained together with the parameters of a common
phenomenological parametrization of F, by mini-
mizing the x? of the four F% (R) with respect to this
parametrization. This was done separately in each bin
of x under the assumption that R, eq. (2), is inde-
pendent of @2 in our kinematic range, as suggested
by QCD calculations which predict only a weak (log-
arithmic) variation of the longitudinal structure
function F, with Q2 [9]:

Fulx, Q)—“(Q) ”:F(ZQ)

490(1——)z6(z 0 )] (3)

where o, (Q?) is the running coupling constant of
QCD. The theoretical prediction Rqcp Was com-
puted from egs. (2) and (3) assuming a gluon mo-
mentum distribution xG(x, Q3)=4.5(1—-x)? at Q3
=5 GeV? and a QCD mass scale parameter A= 220
MeV [8]. In the kinematic range of our experiment,
this prediction does not depend strongly on the gluon
distribution assumed. Eq. (3) does not account for
effects of the charm quark mass and for target mass
corrections which were included following ref. [10]
and ref. [11], respectively. The experimental results
for R are given in table 2 and are compared to the
QCD prediction in fig. 1 together with earlier hydro-
gen data in a similar kinematical range by the Euro-
pean Muon Collaboration (EMC) [12]. At x> 0.20,
the measured values are compatible with zero in
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Table 2
Results for R=0, /o as a function of x. R is assumed to be in-
dependent of Q2 in each bin of x.

X Q% R Statistical Systematic
(GeVv?) error error
0.07 15 0.167 0.134 0.074
0.10 20 0.122 0.078 0.062
0.14 20 0.163 0.055 0.040
0.18 25 0.121 0.051 0.031
0.225 30 0.046 0.032 0.028
0.275 35 0.025 0.027 0.022
0.35 40 0.023 0.025 0.022
0.45 45 —0.011 0.035 0.027
0.55 50 0.005 0.056 0.039
0.65 50 -0.057 0.092 0.071
06 T T T I EE—— T T
04 ® BCDMS i
o EMC
© ——— [
~
o
"
o i
04l 4
-0.6 ST T 1 3 L 1 L
0 0.2 0.4 0.6 08

Fig. 1. R=0y/0or measured in this experiment (BCDMS) as a
function of x. Also shown is the measurement by the EMC on a
hydrogen target [12]. Inner error bars are statistical only, outer
error bars are statistical and systematic errors combined linearly.
The solid line is the next-to-leading order QCD prediction using
Aws=220MeV and a gluon distribution xG(x, @3) =4.5(1-x)*?
atQ3=5Gev?2

agreement with our carbon target measurement [2].
At smaller x, the data show a rise which is consistent
with the QCD prediction.

Raqep was used to compute the final structure func-
tions at the four different beam energies which are
shown #! in fig. 2. The agreement between the differ-
ent data sets in the region of large x allows to set
stringent limits on most of the systematic errors as is

¥ A version of this paper containing detailed tables of F,(x, Q%)
with statistical and systematic errors is available [13].
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Fig. 2. The proton structure function F,(x, Q%) measured at the four beam energies 100, 120, 200 and 280 GeV, using R=Rqcp. At
x<0.275, F,(x, @?) has been multiplied by the factors shown in the figure. Only statistical errors are shown.
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Fig. 3. The structure function F,(x, 0?) from this experiment for all beam energies combined, using R = Rqcp. Also shown are data from
the EMC [12] and SLAC-MIT [14] experiments. Where necessary, the EMC and SLAC data were interpolated to the x bins of this
experiment at each value of Q2 using a third order polynomial. Note that there are no SLAC data in the lowest x bin. The relative
normalizations between the experiments have not been adjusted. At x<0.225, all data have been multiplied by the factors indicated in
the figure. Only statistical errors are shown.
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Fig. 4. The ratio of the proton structure functions F,{x) from
this and from the EMC experiment [12]. In each bin of x, the
data are averaged over the Q2 range common to both measure-
ments. Only statistical errors are shown. Systematic errors are
difficult to visualize because of correlation effects but can be found
in detail in refs. [12,13]. The systematic errors estimated for this
experiment do not explain the observed discrepancy.

discussed in more detail in ref. [2]. The final F,(x,
(0?) from the combined data sets is shown in fig. 3.
The scaling violations which are observed in these
data are compared to predictions from perturbative
QCD in a separate paper [8].

Also shown in fig. 3 are the earlier EMC data from
muon-hydrogen scattering [ 12] and the SLAC-MIT
results from electron-hydrogen scattering at lower Q2
[14]. The x dependence of F, from this experiment
is compared to the EMC result in fig. 4 where the data
are averaged over the Q2 range common to both mea-
surements. The agreement is poor, especially at small
x where F, measured in the present experiment is
larger by up to 15%. In the lowest bin of x, about 4%
of this difference is due to the fact that the EMC re-
sult was obtained using R=0. A similar behaviour was
observed in our measurement on a carbon target [2]
which indicated a steeper x dependence of F, than

PHYSICS LETTERS B
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measured in earlier experiments. A quantitative
comparison to the SLAC data is difficult at small x
where the experiments cover disjoint ranges of Q2.
At large x, the two experiments agree within the sys-
tematic errors.

In conclusion, we have presented a high statistics
measurement of the proton structure functions F, and
R from deep inelastic scattering of muons at high O
on a hydrogen target. The systematic uncertainties are
comparable to the statistical accuracy of the results.
R=0,/0¢ is found to be in good agreement with the
perturbative QCD prediction.
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In a previous letter [ 1], we have reported on a high
statistics measurement of the proton structure func-
tion F,(x, Q%) at large four-momentum transfer
Q? in deep inelastic scattering of muons on a hydro-
gen target. These data exhibit clear deviations from
Bjorken scaling. Here we compare the measured scal-
ing violations to predictions from perturbative quan-
tum chromodynamics (QCD). The results of a sim-
ilar analysis of the nucleon structure function
measured with a carbon target have been reported
earlier [2-4]. Tests of QCD from earlier high statis-
tics muon and neutrino experiments are reported on
in refs. [5-12].

In the framework of perturbative QCD *!, scaling
violations are due to the Q2 evolution of quark and
gluon distributions which can be described by the
Altarelli-Parisi equations [14] or, alternatively, by
the @2 dependence of their moments #2, Higher twist
contributions to F,, which are not described by these
equations, vary like power series in 1/Q? [16] and
are expected to be small over most of the Q2 range of
our data. Furthermore, the data extend up to x=0.75,
thus requiring only little extrapolation to calculate the
evolution integrals. Our measurement is therefore
well suited to a precise test of perturbative QCD.

Several numerical methods have been proposed to
fit the QCD predictions to experimental data. We
have mainly employed two methods [4,17-19] which
have been developed within our Collaboration. They
allow to fit the flavour singlet and nonsinglet evolu-
tion equations both in a leading order (LO) pertur-
bation expansion and in a next-to-leading order ex-
pansion in the MS renormalization scheme. Four
quark flavours were assumed throughout the QCD
analysis.

The experimental data shown in fig. 2 of ref, [1]
were used for the fits. Data points with y<0.20 at
x=0.75,y<0.16 at x=0.65 and y<0.14 in all other
bins of x were excluded to reduce the sensitivity of
the fits to systematic uncertainties. Points with 0> < 8
GeV2atx<0.16, 0?2 <14 GeV2at 0.16 <x<0.25, and
with @2 <20 GeV? at x>0.25 were excluded to sup-
press possible higher twist effects. The combined data
after these cuts are shown in fig. 1.

#! For extensive reviews of perturbative QCD and further refer-
ences, see ref. [13].
¥2 Fora review see ref. [15].

PHYSICS LETTERS B

15 June 1989

In the nonsinglet approximation, the gluon contri-
bution is neglected in the evolution equations. Esti-
mates of the gluon distribution from muon [3,5,6]
and neutrino scattering experiments [8,9] have
shown that this approximation is valid at high values
of the scaling variable x. Therefore, in the non-singlet
analysis of the data reported here, only the kinematic
region with x>0.275 was considered. The cut at
Q? <20 GeV? further reduces the contribution of the
gluon distribution which becomes softer with in-
creasing Q2 due to its QCD evolution. The results of
these fits are summarized in table 1. We find good
agreement between the values of A obtained with the
different programs. The average result for the QCD
mass scale parameter in next-to-leading order is

Apis =205 22 (stat.) £60 (syst.) MeV |
corresponding to a strong coupling constant of
o (Q?=100 GeV?)

=0.15610.004 (stat.) £0.011 (syst.) .

To evaluate the systematic errors on A and «, the
individual systematic uncertainties on F, were added
to the data and the fits repeated. This was done for
each contribution to the systematic error in turn and
the resulting changes in A were combined in quadra-
ture. The final systematic error A4 =60 MeV is dom-
inated by the 1% uncertainty on the relative normal-
ization between data taken at the four different beam
energies. We have checked that all numerical results
on A and «; presented in this paper are insensitive to
the choice of the Q3 at which the QCD evolution is
started.

Global QCD fits as they are conventionally used to
determine A4 do not, however, constitute a sensitive
test of quantum chromodynamics. In general, the y*’s
of such fits describe mainly their agreement with the
x dependence of the structure functions which is not
predicted by the theory, and the fits can be biased by
a priori assumptions on the functional form of F,(x,
03). A more stringent test is obtained by comparing
directly the x dependence of the measured scaling vi-
olations, averaged over 02, to the one expected from
the QCD evolution. Within the accuracy of the pres-
ent measurements, this is the only specific prediction
of perturbative QCD for deep inelastic scattering
which can be tested experimentally. In the nonsinglet
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Fig. 1. The structure function F,(x, Q%) using R= Rqcp for all beam energies combined. The solid lines represent the singlet +nonsinglet

QCD fit discussed in the text. Only statistical errors are shown.

approximation, this comparison depends on A as the
sole frec parameter whereas in a singlet analysis over
the full x range it is also sensitive to the gluon
distribution.

The nonsinglet case is shown in fig. 2a where the
logarithmic derivatives dIn F,(x, Q%)/dInQ? are
compared to the next-to-leading order prediction for
Awis =205 MeV. The logarithmic derivatives in this
figure are the slope parameters of straight line fits
In F,=aln Q%+ b to the data. To calculate in a con-
sistent way the theoretical predictions shown in the

Table 1

same figure, the result of the QCD fit, F%, was as-
signed at each (x, Q2) point the statistical error of
the corresponding experimental F,. The logarithmic
derivatives d In £%/dIn Q? were then obtained by the
same straight line fit as for the experimental data.
Within the errors, this linear representation is an ex-
cellent approximation of both the experimental and
the predicted Q2 evolution. The measured x depen-
dence of the scaling violations in fig. 2a is in agree-
ment with the predicted one within statistical errors.

We have searched for higher twist effects in our data

Results of nonsinglet QCD fits to F,(x, ¢?) in leading order (LO) and next-to-leading order in the MS renormalisation scheme. The
data are fitted in the kinematic range x> 0.275 and Q2?3 20 GeV?; additional cuts on y are discussed in the text. Four quark flavours are
assumed in the QCD analysis. x? is the x? of the direct comparison between measured and predicted scaling violations (fig. 2a). Only

statistical errors are given.

Method Ao x2/DOF x2/DOF Avs x*/DOF x2/DOF
(MeV) (MeV)

ref. [18] 17822 180/198 7.8/5 208+22 1777198 6.1/5

ref. [19] 181+21 180/198 7.9/5 198+21 177/198 4.7/5

carbon

target [3] 210+20 230%20
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Fig. 2. (a) The logarithmic derivatives d In F>(x, Q*)/dIn Q0?2
observed in this experiment at @220 GeV?2 and x> 0.275. The
inner error bars are statistical, the outer error bars show statisti-
cal and systematic errors added linearly. The systematic errors
are strongly correlated. The lines show nonsinglet QCD predic-
tions for Ays =205 MeV and for two other values of A. (b) As
(a), compared to carbon target results obtained with the same
apparatus [3]. The QCD predictions are shown for a common
value of Axpg =220 MeV. Only statistical errors are shown. The
systematic errors of the carbon data are very similar to those of
the hydrogen data shown in (a).

in the region x> 0.25 in several ways. We first do an
explicit fit on higher twist terms, parametrizing F, (x,

Q%) as [16]
Fy(x, Q*)=F5"(x, Q*)[1+H(x)/Q?],

where FiT(x, Q%) follows the leading twist QCD
evolution equations. We fix A to the value obtained
in the nonsinglet fit (table 1). The higher twist term
H(x) is fitted as a set of parameters H,=H(x;) and
is found to be compatible with zero at all x,. The same
result is found, albeit with larger errors, when A is
treated as a free parameter in the fit. We have also
made pure nonsinglet QCD fits with different lower
cut-offs in Q2. Cutting at 0?=30 GeV? and Q*=40
GeV? changes 4 by +15MeV and — 10 MeV, respec-
tively. There is thus no evidence for higher twist ef-
fects in the kinematic range of the nonsinglet fit.

For the QCD analysis over the full x range of the
data, the proton structure function is decomposed
into a singlet (S) and a nonsinglet (NS) part as
F, =F$+ F¥S, where FY® and F$ follow different O?
evolutions, the evolution of F$§ being coupled to the
gluon distribution. We have checked using the method
of ref. [20] that the effect of the charm threshold is

PHYSICS LETTERS B

15 June 1989

negligible in the kinematic range of this analysis.

The usual method to determine the gluon momen-
tum distribution is to parametrize it at a given Q3
and to evolve it with Q2. We have chosen the param-
etrization xG(x, Q3)=A(n+1)(1—x)7 at Q%=5
GeV2. A more complicated parametrization is not
justified by the accuracy of our measurement. The
parameters 4 and n have been fitted together with A
and with parametrizations of FY5 and F$. The re-
sults obtained with our two fitting programs are in
good agreement and are given in table 2. The results
for A agree with those of the nonsinglet fits. In next-
to-leading order, we find a soft gluon distribution
which justifies the nonsinglet fits of A5z discussed
above. Systematic errors on 4 and # have been eval-
uated as for the nonsinglet case.

Assuming the parametrization of xG(x, Q3 ) to be
valid over the full x range, A equals the fraction of
the proton momentum carried by the gluons. When
it is treated as a free parameter in the fits, we find
A=0.5. This is compatible with what is expected from
the momentum sum rule which we have therefore
imposed in the following analysis in order to con-
strain 4. The results from such fits are given in table
3 and are in good agreement with those quoted in ta-
ble 2. We have also used the program of ref. [18] to
calculate for fixed values of # the y2 of the compari-
son of measured and predicted logarithmic deriva-
tives of F, in the same way as for the nonsinglet fits.
These x>’s are shown in fig. 3a and exhibit different
minima for the leading and next-to-leading order fits.
A and n corresponding to these minima coincide with
the results given in table 3. The correlation between
n and A is shown in fig. 3b and is weaker than ob-
served in previous experiments. This is a conse-
quence of the softness of the gluon distribution and
of the high accuracy of the data at large x where the
effect of the gluons becomes negligible. The mea-
sured scaling violations are compared in fig. 3c to
next-to-leading order fits for different values of 7 and
show again very good agreement with the theoretical
prediction for n=38.3.

The gluon distributions in leading and next-to-
leading order which correspond to the fits of table 2
are shown in fig. 4. They are valid only in the range
0.06 < x<0.30 since there are no F, data at smaller x,
and at large x the gluon distribution is too small to
have a noticeable effect on the scaling violations. Also
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Table 2

Results of singlet+ nonsinglet QCD fits to F»(x, Q?) over the full x range of the data, in leading order (LO) and next-to-leading order in
the MS renormalisation scheme, without imposing the momentum sum rule. Kinematic cuts are discussed in the text. 4 and » are the
parameters of the gluon momentum distribution which is chosen as xG(x)=A4(n+1) (1 —x)". Four quark flavours are assumed in the
QCD analysis. Only statistical errors are given.

Method 4,0 Ao o x2/DOF y2/DOF A Avis VS x*/DOF y2/DOF
(MeV) (Q*=5GeV?) (Q%=35GeV?) (MeV) (Q?=5GeV?) (Q*=5GeV?)
ref. [18] 200+30 0.61x0.12 5.8%£2.5 254/268 11.7/8 214+22 0.62%+0.20 11.6£3.0 256/268 8.6/8
ref. [19] 21035 0.59+0.10  4.8+2.2 257/269 12.5/8 20723 0.58+0.10  85%23  256/269 10.7/8
Table 3
As table 2, but imposing the momentum sum rule.
Method Ao Mo x2/DOF x2/DOF Awis s x*/DOF x2/DOF
(MeV) (Q%*=5GeV?) (MeV) (Q*=5GeV?)
ref. [18] 215+27 3.7+1.2 2577269 15.2/9 224121 83%1.5 258/269 11.4/9
ref. [19] 216+30 42+1.5 257/270 13.4/9 212121 7.8%1.5 256/270 11.5/9
shown in the same figure is the earlier EMC result zation for xG(x, Q§) at x> Xx;, which we take to be
[5] obtained in leading order for a fixed value of
A=90MeV. xGi(x, Q3)=C,[(1-x)/(1-x)]1* (x=x)),
A complementary method to determine the gluon
momentum distribution consists in evaluating it from using only the scaling violations measured at x=ux;
the measured scaling violation in each bin of x sepa- and assuming Axss =220 MeV (see below). The coef-
rately. When the QCD mass scale parameter is fixed, ficients C;=x,G:(x,, Qf) are fitted separately using
the gluon distribution is the only unknown function the same value for {. This parameter is determined
in the QCD evolution equation. It is estimated at each iteratively such that the x dependence of the fitted C;
bin center x; individually by assuming a parametri- is well described by a parametrization proportional
20 T T T T 0.1
a) 260 b) |
15 - 0
240 - B
— Nd
= g
o —
- 10 - 13 220 + - '\‘:; 01
-~ = s
> on
=< o
5 | o Leading order A 2007 17 -0.2
® Next-to-leading order (MS) oLeading order -
180 | @ Next-to-leading order (MS) +
4] ! 1 1 Il -03 i 1 [ i

0 5 10 15 0 5 10 15 0 0.2 0.4 06 0.8
n n X

Fig. 3. (a) The x? of the comparison of measured and predicted scaling violations as a function of the exponent 5 of a gluon distribution
xG(x,@5)=A(n+1)(1-x)"at Q3 =5 GeV ? from flavour singlet + nonsinglet fits at leading and next-to-leading order. (b) The depen-
dence of the QCD mass scale parameter 4 on the exponent 7 of the gluon distribution from the same fits as in (a). (¢) The same as fig.
2a, but for the full kinematical range of the data. The singlet+nonsinglet prediction in next-to-leading order QCD is also shown for
different exponents 7.
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Fig. 4. The gluon momentum distribution xG(x, @3) in the pro-
ton at Q% =5 GeV 2. The parametrizations shown correspond to
the results of the QCD fits in leading and next-to-leading order
from table 2 and are compared to the earlier leading order anal-
ysis from the EMC experiment {5]. Also shown is the gluon dis-
tribution determined in bins of x as discussed in the text. No sys-
tematic errors are shown.

to (1—x)* In next-to-leading order, the best agree-
ment is observed for {=11 as expected from the pre-
vious method. Assuming { =9 ({=13) decreases (in-
creases) all C; by approximately 8%. The principal
interest of this method lies in the reliable estimate of
statistical errors. The coefficients C; for {=11 are
shown in fig. 4 together with the fits of xG(x, Q%)
given in table 2. The dominant systematic error is due
to the relative normalisation uncertainty, whereas the
uncertainty on Ays has only a negligible effect. The
total systematic errors, including the uncertainty on
{, are typically half the statistical ones.

The QCD analysis presented in this paper can be
compared to the one performed on our earlier mea-
surement with a carbon target [3]. The kinematical
domains used for the nonsingiet fits are aimost iden-
tical and the results for A are in agreement within sta-
tistical errors. They can be combined to give

Avs =220115 (stat.) 50 (syst.) MeV

corresponding to a strong coupling constant

PHYSICS LETTERS B
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o, (Q*=100 GeV ?)
=0.1585+0.0025 (stat.) +0.0090 (syst.) .

The largest contributions to the systematic errors on
the two measurements of Axz come from the nor-
malization uncertainties between data taken at dif-
ferent beam energies. These uncertainties are to a
large extent uncorrelated between the carbon and hy-
drogen experiments, thus allowing to reduce the sys-
tematic error from this contribution for the com-
bined result. The scaling violations measured with the
two different targets are compared in fig. 2b to their
respective QCD prediction for the same value of
Ams =220 MeV. Different scaling violations in hy-
drogen and carbon are predicted by the evolution
equation from the different x dependence of F, mea-
sured on proton and isoscalar targets. Such a differ-
ence is observed in the data with a good statistical
significance: the probability P(x?) of the carbon and
hydrogen data to agree with their respective QCD
prediction is 40%, whereas the combined probability
of the carbon data to agree with the hydrogen predic-
tion and of the hydrogen data to agree with the car-
bon prediction is less than 0.3%. We estimate the lat-
ter probability to increase to a few percent when
systematic errors are taken into account. The fact that
different patterns of scaling violation are compatible
with a common value of Ay is an additional confir-
mation of the remarkable consistency between our
data and the QCD predictions.

In conclusion, we find that scaling violations ob-
served in our high statistics measurement of the pro-
ton structure function F,(x, Q2) at high Q2 are in
quantitative agreement with predictions from per-
turbative QCD. Nonperturbative effects are not re-
quired to explain scaling violations in the kinematic
range of this experiment. The nonsinglet approxi-
mation and the complete singlet and nonsinglet fits
to the data give consistent results for Azs which are
in agreement with our earlier result from a carbon
target. Combining these measurements, we obtain a
value of Ays =220+ 151 50 MeV. The gluon distri-
bution of the proton has been determined from sin-
glet+nonsinglet fits in next-to-leading order QCD in
the range 0.06 <x<0.30.
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We present results on a high statistics study of the nucleon structure functions /,(x, Q%) and R=0,/0r measured in deep
inelastic scattering of muons on a deuterium target. The analysis is bascd on 8 X L0° events after all cuts, recorded at beam energies
of 120, 200 and 280 GV in the kincmatic range 0.06 <x<0.80 and 8 GeV?< %< 260 GeV?, Scaling violations observed in the
data are in agreement with predictions of perturbative QCD and allow to determine the QCD mass scalc parameter /1.
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Table 2

d’a Results for R =0, /o7 as a function of x. R is averaged over Q2 in

sz dx each bin of x.
4ma? . yE*+Q? ) x Q% R AR AR

T Q% (l_y_ a8 T 2E7(R(x, 05 + 1] (GeV?) (stat.) (syst.)

XF(x, 0%, M G4 0 ons oo ook
wherc E is the energy of the incident muon, Q? the 0.18 35.0 0.160 0.077 0.038
squared four-momentum transfer between the muon 0.225 45.0 0.222 0.069 0.041

. . 0.275 50.0 0.061 0.049 0.036

and the nucleon, and x and y are the Bjorken scaling 0.35 65.0 0.077 0.042 0.034
variables. This cross section depends on two struc- 0.45 75.0 0.060 0.062 0.036
ture functions F, and R, where R=0 /oy is the ratio 0.55 85.0 0.165 0.120 0.056
of absorption cross sections for virtual photons of 0.65 85.0 0.043 0.181 0.107
longitudinal and transverse polarization.

The measurement which we describe here is simi-
lar to an earlier one with a hydrogen target [1-3].
The data were collected at the CERN SPS muon beam
with a high-luminosity spectrometer which is de-
scribed in detail elsewhere [4]. The results presented
here arc based on 8 X 10° reconstructed events after s 0.8
all cuts, recorded with positive muon beams of 120, E BCDMS
200 and 280 GeV energy. The kinematic ranges and " Deuterium
data samples are summarized in table 1. A part of o 08
these data has been used carlier in a study of nuclear
effects [5]. The analysis of the data proceeds in ex-
actly the same way as for the measurement with the 04t

hydrogen target and is also very similar to the analy-
sis of our carlier carbon target data [6-8 1. We there-
fore do not describe it here. Radiative corrections
werc calculated following ref. [9]. In comparison to
the hydrogen data, the only additional contribution
is due to coherent scattering on the deuteron.

The experimental results for R are given in table 2
and are shown in fig. 1 together with a perturbative
QCD prediction Rocp which is calculated from

Fi(x, Q%) + (4M%%/Q?) Fy(x, Q%)
Fy(x, Q%) —F (x, Q%) ’
(2)

R(X, Q2)=

Table 1
Kincmatic ranges and number of events after all cuts at the threc
different beam energies.

Beam energy Q?%range X range Number of
(GeV) (GeVv?) cvents

120 8-106 0.06-0.80 311000
200 16-150 0.06-0.80 385000
280 30-260 0.08-0.80 77000

[
A
\ [an
0.2F
*
m
\\ M m
(W]
\
.

“0. 0.2 0.4 0.8
X

Fig. 1. R=0, /oy measured in this experiment as a function of x.
Inner error bars arc statistical only, outer error bars are statistical
and systematic errors combined linearly. The systematic crrors
are dominated by the relative normalization uncertainty be-
tween data taken at different beam energies and are thus strongly
corrclated. The solid linc is the next-to-leading order QCD
prediction using Ams =220 MeV and a gluon distribution
xG(x,Q3)=4.5(1—x)*at Q2=5GeV2{2].
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where Fi 1s the longitudinal structure function and M
is the mass of the nucleon *!. In perturbative QCD,
Fy isgiven by

F(x 01 = 2420 ILM&Q)

i?( ) 2G(z, 0 {] (3)

[10], where a,(Q?) is the running coupling constant
of QCD. To compute Fy, we assume a QCD mass
scale parameter 4A=220 MeV and a gluon momen-
tum distribution xG(x, Q3)=4.5(1-x)® at Q=5
GeV? [2]. In the kinematic range of our data, Rqcp

# Inrefs. [1,6], we have used a relation between R and F;, which
is not consistent with the expression for F; of eq. (3). This
increases slightly the QCD prediction for R but does not affect
the measured values. Since we used the perturbative QCD
prediction for Fy in the computation of Fs, the latter decrcases
by approximately 1%o over the entirc kinematic range of the
data. This is completely negligible when compared to the errors.
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does not depend strongly on the gluon distribution
assumed. The data lie above this prediction but there
is no disagrecment within the errors.

Rqcp was used to compute the structure function
F,(x, Q%) which is shown * in fig. 2 for the three
different beam energics. The principal sources of sys-
tematic errors in the data are uncertainties in
- the calibration of the incident beam cnergy (AE/
FE<0.15%),

— the calibration of the spectrometer magnetic field
B (AB/B<0.15%),

- corrections for the energy loss & of muons in iron
[11] (Ae/e<1%),

— corrections for the finite resolution £ of the spec-
trometer (AYX/2<5%),

- the rclative cross section normalization of data
taken at different beam energics (1% between the 120

¥2 A version of this paper containing detailed tables of F,(x, Q2)
with statistical and systematic errors is available as preprint
CERN-EP/89-170.

'bx. L x=0.36 _
E: 0g unOa‘ésp.. 0
=045 . o
%00
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¢¢0.*
#gij*ﬁé % |
x=0.75
- by
s, 4 Y
[~ O 120 Gev }
- @ 200 GeV
. © 280 Gev %
llll | I N ll_lll 1
10 100 ? (GeVz)

Fig. 2. The deuteron structure function F,(x, Q%) measured at the threc beam energies 120, 200 and 280 GeV, using R=Rocp. At
x<0.275, F,(x, @*) has been multiplied by the factors shown in the figure. Only statistical errors are shown.
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GeV and 200 GeV data, 1.5% between the 280 GeV
and 200 GeV data),
— the absolute cross section normalization (3%).

Most of the results presented in this paper, espe-
cially those on R and on the comparison of scaling
violations to QCD predictions, are affected by the
uncertainty on the relative but not on the absolute
cross section normalization. Systematic errors origi-
nating from uncertaintics in the detector efficiencies
(0.5%) are small due to the redundancy in the exper-
imental apparatus. The agreecment between the dif-
ferent data sets in the region of large x confirms our
cstimate of most of the systematic errors as we have
discusscd in more detail in ref. [6].

The final F,(x, @?) from the combined data sets is
shown in fig. 3. Shown in the same figure are earlier
EMC data from muon-deuterium scattering [ 12]. In
comparison to these data we find a poor agrcement,
especially at small x, which is similar to the one ob-
served in the hydrogen data [1 ]. Also shown in this
figure are results from a recent analysis of SLAC data
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on electron-deuterium scattering at lower Q2 [13].
In the region of x<0.35 where the experiments cover
disjoint ranges of 2, the SLAC data extrapolate to
our results within the errors. At larger x and in the Q2
region of overlap the crrors of our data are domi-
nated by the systematic uncertainties, which are
strongly correlated. Within these errors, both data sets
are compatible with a smooth Q2 evolution of a com-
mon F,.

Clear deviations from Bjorken scaling are ob-
served in the structure function F, (fig. 2). We com-
pare these scaling violations to predictions of QCD
using the same methods which we have applied pre-
viously to our carbon [7.8] and hydrogen [2,3] data.
In the framework of perturbative QCD [ 14] scaling
violations arc due to the Q? evolution of quark and
gluon distributions and can be described by the
Altarclli-Parisi equations [15] or, alternatively, by
the Q2 dependence of their moments [16]. The data
extend up to x=0.75, thus requiring only little ¢x-
trapolation to caiculate the cvolution integrals. Higher

& =035
CX" 8 &y, oangy
T = o
& [ wm045 ay, . OO%OCV%OgOOOO 4,
x=0.55 &,
1 o
10— ) o? e“"oo.*,
- %M
I
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r t
s x=0.75 A ?
+ +¢ ¢$¢¢¢ ﬁ
102 Deuterium
r O BCDMS
| ® EMC
& SLAC %
[l Lol #nllnul

1 10 10
Q* (GeV/c)?

Fig. 3. The structure function F,(x, Q*) from this experiment for all beam energies combined, using R= Racp. Also shown are data from
the EMC [12] and SLAC [13] experiments. Where necessary, the EMC data were interpolated to the x bins of this experiment at each
value of @ using a third order polvnomial. The rclative normalizations between the expcriments have not been adjusted; the normali-
zation uncertainties are 3%, 5% and 2% for the BCDMS, EMC and SLAC data, respectively. At x<0.225, all data have been multiplied
by the factors indicated in the figure. The error bars are statistical and systematic crrors combined in quadrature and are thus partially

corrclated.
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twist contributions to £, which are not described by
these equations, vary like power scries in 1/Q% [17]
and are expected to be small over most of the Q7 range
of our data.

Several numerical methods have been proposed to
fit the QCD predictions to experimental data. We
have mainly employed two methods [3,8,18] which
have been developed within our collaboration. They
allow to fit the flavour singlet and nonsinglet evolu-
tion equations both in a leading order (LO) pertur-
bation expansion and in a next-to-leading order ex-
pansion in the MS renormalization scheme. Four
quark flavours were assumed throughout the QCD
analysis.

The experimental data shown in fig. 2 were used
for the fits. Data points with y<0.20 at x=0.75,
y<0.16 at x=0.65 and y<0.14 in all other bins of x
were excluded to reduce the sensitivity of the fits to
systematic uncertainties. Points with Q%< 14 GeV?
at 0.16 <x<0.25 and with @*<20 GeV? at x>0.25
were excluded to suppress possible higher twist cf-
fects. These cuts arc the same as in the analysis of the
hydrogen data.

In the nonsinglet approximation, the gluon contri-
bution is ncglected in the evolution equations. Esti-
mates of the gluon distribution from muon
[2,7,19,20] and neutrino scattering experiments
[21,22] have shown that this approximation is valid
at high values of x. Therefore, in the nonsinglct anal-
ysis of the data reported here, only the kincmatic re-
gion x> 0.275 was used. The cut at Q?=20 GeV* fur-
ther reduces the contribution of the gluon distribution
which becomes softer with increasing Q2 due to its
QCD evolution, The results of these fits are summa-
rized in table 3. We find good agreement between the
values of A obtained with the different programs. The
avcrage result for the QCD mass scale parameter in
next-to-leading order 1s

Table 3

PHYSICS LETTERS B
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Azs=230140 (stat.) =70 (syst.) MeV ,
corresponding to a strong coupling constant of

@, (0?=100 GeV ?)
=0.16010.006 (stat.) £0.011 (syst.) .

This is in good agreement with the results of our ear-
lier measurements on carbon and hydrogen targets,
Ams=220%15 (stat.) £350 (syst.) MeV [2,7]. To
cvaluate the systematic errors on 4 and «, the indi-
vidual systematic uncertainties on £, were added to
the data and the fits repcated. This was done for each
contribution to the systcmatic error in turn and the
resulting changes in A were combined in quadrature.
The final systematic error AA=70 MeV is dominated
by the uncertainty on the relative normalization be-
tween data taken at three different beam cnergies.

As we have discussed in more detail in refs. [2,7],
the agreement between data and QCD fit, which is
prerequisite for a meaningful determination of «a, 1s
best verified by comparing the x dependence of mea-
sured and predicted scaling violations. This is shown
for the nonsinglet casc in fig. 4a where the average
logarithmic derivatives dln Fo(x, Q?)/dIn Q? are
compared to the next-to-leading order prediction for
Ans =230 MeV. The measured x dependence of the
scaling violations is in agreement with the predicted
one.

In the QCD analysis over the full x range of the
data, the Q% evolution of the deuteron structure func-
tion, which is an almost pure flavour singlet, is sen-
sitive to the gluon distribution at small x. We use the
gluon distribution xG(x)x (1—x)8 at Q§=5 GeV?
determined 1n next-to-leading order from our hydro-
gen data [2] and fit A over the full kinematic range
of the data. This fit yields A35=250 1 35 (stat.) MeV
in agrcement with the result of the nonsinglet fit. The
measured logarithmic derivatives and the corre-

Results of nonsinglet QCD fits 10 F»(x, 0?) in leading order (LO) and next-to-leading order in the MS renormalisation scheme. The
data are fitted in the kinematic range x> 0.275 and Q2 20 GeV?; additional cuts on y are discussed in the text. Four quark flavours are
assumed in the QCD analysis. 2 is the y? of the direct comparison between measured and predicted scaling violations (fig. 4a). Only
statistical errors are given; systematic errors are discussed in the text.

Mecthod Aro (MeV) x?/DOF x2/DOF Axs (MeV) 23/DOF 72 /DOF
refs. [3,8] 210+ 37 1237155 6.5/5 236+39 126/155 9.2/5
ref. [22] 206+ 35 135/154 5.9/5 22034 140/154 8.2/5
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Fig. 4. (a) The logarithmic derivatives d In F,(x, @%)/d In Q? observed in this experiment, averaged over Q2, for Q> 20 GeV? and
x>0.275. The inner crror bars are statistical, the outcr crror bars show statistical and systematic crrors added linearly. The systcmatic
errors are strongly corrclated. The lines show nonsinglet QCD predictions for A5z =230 MeV and for two other values of A, (b) The
same as (a) but for the full x range of the data. The line shows a singlet QCD prediction for Ags =250 MeV, assuming a gluon momentum
distribution xG(x, 03)=4.5(1 —x)* at 03 =5 GeV ? [2]. The QCD prediction fits the data with a y2/DOF=19.0/10. Only statistical

errors are shown.

sponding QCD prediction for Ayz =250 MeV arc
shown in fig. 4b. Treating thc power of the gluon dis-
tribution as a free parameter in the fit gives compat-
ible results within large errors.

In conclusion, we have presented a high statistics
measurement of the deuteron structure functions F,
and R from deep inelastic scattering of muons at high
Q? on a deuterium target. Scaling violations are ob-
served in the data and are in agreement with predic-
tions from perturbative QCD. We find A5 to be in
good agrcement with our earlier result obtained with
carbon and hydrogen targets.
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2.3 Studium EMC efektu

Na pocatku osmdesatych let vyvolal ve svété znacnou pozornost vysledek experimentu
FEuropean Muon Collaboration, ktery se rovnéz uskutecnil v CERN. Podstatou tohoto
vysledku, pro ktery se brzy ujal ndzev EMC' efekt, bylo zjisténi, Ze strukturni funkce
nukleonu vazaného v jadie se ponékud lisi od strukturni funkce volného nukleonu. Tento
vysledek prirozené vyvolal zajimavé hypotézy a spekulace o chovani kvarkt v nukleo-
nech vazanych v jadrech, o vlivu této vazby na vnitini strukturu nukleonu. Do vazby
mezi nukleony naptiklad vyznamné prispiva vyména mezont, tj. i tyto ¢astice mohou
efektivné prispivat do strukturni funkce mérené na jadre.

EMC efekt lze dobte a ¢isté demonstrovat na poméru strukturnich funkei mérenych
na jadre s hmotovym ¢islem A a na jadre deuteria:

F3'(z,Q%)/Fy (2, Q).

Tento pomér se podafilo spolehlivé zméfit i v experimentu BCDMS pro jadro 35Fe
[A4], viz ¢ast 2.3.1. Analyza ukdzala, ze v kinematické oblasti experimentu BCDMS
tento pomér nezavisi na Q? a v oblasti z > 0.25 velmi dobfe souhlasi s existujicimi
daty jinych experimenti. V oblasti 0.06 < z < 0.25 byl v BCDMS naméren efekt
méné vyrazny, nez ukazovala pivodni EMC data [25], avsak pozdéjsi a presnéjsi EMC
data [26] jsou v dobré shodé s daty BCDMS, viz obrézek [2.3] Poznamenejme, ze EMC
efekt zustava aktualnim problémem i v soucasnosti, jak o tom svédci naptiklad nedavné

préace [28]— [30] i dalsi préce v nich citované.
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Several muon and electron scattering experiments
at CERN and SLAC have investigated the effect that
a nucleon embedded in a nucleus has a quark distri-
bution different from that of a free nucleon. In deep
inelastic scattering, the “EMC effect” is studied by
comparing the nucleon structure function F4(x)
measured on a heavy nucleus of mass A4 to the deu-
terium structure function F5?(x), where x is the
Bjorken scaling variable. While all experiments agree
on the pattern of the nuclear effect in the valence-
quark region x> 0.3, namely a softening of the struc-
ture function when measured on a heavy target, the
experimental situation in the low-x region is contro-
versial. The EM Collaboration. in their original
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measurement [1] observed the ratio
F5e(x)/FP*(x) to increase linearly towards small x.
On the contrary, the SLAC E139 experiment [2]
which measured cross section ratios o/¢® for a vari-
ety of nuclei found no significant effect in the region
of x<0.3, independent of the target mass. An earlier
SLAC experiment [3] at small four-momentum
transfers Q*~ 1 GeV? had observed an enhancement
around x~0.15 and a turnover at very small x~0.05. [wsie

In a previous paper [4] we have presented data on §
the structure function ratios F4(x)/F P2(x) for nitro- Lo
gen (A=14) and iron (4=156) measured at a beam
energy of 280 GeV. The N, data covered the range
0.08<x<0.70 and exhibited no significant enhance-
ment at small x in agreement with the SLAC E139
data. The Fe data extended over the range 0.20<
x<0.70 only and allowed no conclusion on the P
behaviour of the effect at low x. In this letter, we
report on a new experiment with deuterium and iron
targets which was specifically designed to study the
ratio F5°(x)/F¥*(x) in this kinematic domain with
good statistical and systematic accuracy.

The experiment was performed at the CERN SPS =
muon beam with a high-luminosity spectrometer
which is described in detail elsewhere {5]. A sche-
matic view of the experimental set-up is shown in
fig. 1. The apparatus consists of a 40 m long mag-
netized iron toroid which is subdivided into 8 mod-
ules and instrumented with scintillation trigger
counters and multiwire proportional chambers. The
central bores of the first six modules contain target
vessels (““internal” targets) filled with liquid deu-
terium. Two external targets in front of the magnet,
followed by a set of MWPC with three-coordinate
readout, extend the acceptance of the spectrometer
to small angles, i.e., to smaller 0* and x than are
accessible with the internal targets. For a part of the
data taking, the first of the external targets was
replaced by a 45 ¢cm long iron target. The data were
recorded with a beam of 200 GeV positive muons of
2x 107 w's average intensity. The total beam flux was
17.2x 10" p for the ““all D,” target arrangement and
6.0 10'" u with the iron target installed.

Due to the vertex resolution of the spectrometer,
the deuterium data are strongly contaminated by iron
events when both target materials are exposed to the
beam simultaneously. The deuterium events from
this period of data taking are therefore not included
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in the present analysis. For the second half of the iron
data taking the deuterium targets were emptied. The
inverse contamination of the iron data by events from
the neighbouring D, target is much smaller due to
the strongly different target densities. This back-
ground was determined both by a Monte Carlo study
of the vertex resolution and by a direct comparison
of the iron samples taken with and without D, in the
second target. With both methods we find a contam-
ination of 1.3% for which the data are corrected. A
background from target wall interactions which
amounts to 0.7% for the external and 2.5% for the
internal targets is subtracted from the D, data.

The structure functions are obtained from the
experimental data in a way which is very similar to
the one described in ref. [4]. The experimental dis-
tributions are converted to cross sections, correcting
for acceptance and resolution of the spectrometer by
a detailed Monte Carlo simulation of the experi-
ment. To evaluate the structure functions F,(x,0?)
we assume a constant value R=¢,/01=0. Although
this is an approximation in the region of small x, it
does not affect the F, ratio provided that R is inde-
pendent of atomic mass. The deuterium structure
function is computed separately for events from
internal and external targets for which the accept-
ance of the spectrometer is different. In the kinemat-
ical region of overlap, the structure functions are in
agreement within statistical errors and were com-
bined for the subsequent analysis. The iron data are
corrected for the non-isoscalarity of *Fe assuming a
neutron/proton structure function ratio
F3/F%=1-0.75x. No corrections are applied for the
Fermi motion of nucleons inside the nucleus. The
results presented here are based on 4.1 x10° recon-
structed events originating from the deuterium and
2.8x10° events from the iron targets.

The sources of systematic errors in the F, ratio are
largely the same as in our earlier experiment [4].
They are mainly due to the resolution of the spec-
trometer, small uncertainties on the energy loss in the
different target materials, hadronic shower punch-
through into the proportional chambers, and the
reproducibility of the spectrometer magnetic field
settings. The uncertainty from spectrometer resolu-
tion is larger than in our previous data because the
acceptance of the apparatus for events from the
external targets decreases along the beam direction

PHYSICS LETTERS B
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and is therefore different for the two target mate-
rials. Errors on the acceptance correction due to this
effect were calculated by varying the vertex resolu-
tion in the Monte Carlo simulation of the experi-
ment. The uncertainty on the relative luminosity
calibration of the Fe and D, data is estimated to be
1.5%.

The FE¢/FP? ratio is shown as a function of x and
Q” in fig. 2 and does not exhibit a significant Q2
dependence. It is therefore averaged over 0% and is
shown as a function of x in fig, 3 together with our
previously published data [4]. Good agreement is
observed between the two measurements and the
structure function ratio F5(x)/FP*(x) from the
combined data sets is given in table 1.

The results from this and from other charged lep-
ton experiments are shown in fig. 4. The comparison
to the EMC iron data [ 1] shows good agreement for
x>0.15, apart from a 3% shift in the relative nor-
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Fig. 2. The structure function ratio F §e/FP2 in bins of x and o?
from this experiment at 200 GeV beam energy (closed points)
and from an earlier experiment at 280 GeV [4]1 (open points).

Only statistical errors are shown. The dotted lines indicate the
average over the respective x bin.
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malization. For x<0.15, the two measurements are
marginally compatible within the quoted systematic
errors. Preliminary data from the EM Collaboration
on a copper target show a less pronounced effect at
small x in good agreement with our result [6]. The
agreement with the SLAC E139 data [2] is excellent
for x> 0.25 but rather poor at small x. In this region,
we observe, however, a very good agreement with the
earlier SLAC experiment on a copper target [3] at
small Q°~ 1 GeV?.

Table 1

Fig. 4. The structure function ratio F5¢(x)/F52(x) from this and
from a previous measurement [4] combined, compared to other
muon (a) and ¢lectron (b) scattering experiments. The data from
ref. [3] were taken with a copper target. Only statistical errors
are shown.

In summary, we have complemented our earlier
measurement of the structure function ratio
F5(x,0*)/F2*(x,0*) by new data covering the
region of small x (0.06 <x<0.20) and improving the

Results for R(x)=F5°(x)/FP*(x) from this experiment and ref. [4] combined. The systematic errors do not include the 1.5% uncer-

tainty on the relative normalization of Fe and D, data.

X Q% range R(x) Statistical Systematic
(GeV?) error error
0.07 14- 20 1.048 0.016 0.016
0.10 16— 30 1.057 0.009 0.012
0.14 18- 35 1.046 0.009 0.011
0.18 18- 46 1.050 0.009 0.009
0.225 20-106 1.027 0.009 0.010
0.275 23-106 1.000 - 0.011 0.010
0.35 23-150 0.959 0.009 0.011
0.45 26-200 0.923 0.013 0.015
0.55 26-200 0.917 0.01% 0.021
0.65 26-200 0.813 0.023 0.030
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statistical accuracy at larger x. No @ dependence of
the nuclear effect is observed over the kinematic
range of the experiment. In the region x>0.235, we
find good agreement with all other charged lepton
experiments [1,2,4,6]. For x<0.25, we observe an
enhancement of the structure function ratio of
4.5% = 0.5% (stat.) =2.0% (syst.) where the system-
atic error includes the uncertainty on the relative
normalization of iron and deuterium data.

PHYSICS LETTERS B
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Kapitola 3

Strukturni a distribuc¢ni funkce
v kovariantnim QPM

Partonovy model je nepostradatelnym nastrojem pro analyzu a interpretaci struktur-
nich funkci nukleont, které se méri v experimentech DIS. Tyto funkce lze v soucasnosti
ziskat pouze z experimentalniho méreni. Pti analyze jsou strukturni funkce uvedeny mo-
delové zavislym zpisobem do vztahu s distribuc¢nimi funkcemi kvarki, které jiz obsahuji
o pritomnosti kvark v nukleonu primou a detailni informaci. K métreni strukturnich
funkei slouzi dva typy experimentii:

i) nepolarizovany DIS

V prislusném experimentalnim usporadani jsou terc i svazek leptont nepolarizované.
Jak jsme ukazali v predchozi ¢asti, nepolarizované strukturni funkce nukleonti jsou
v soucasnosti s vysokou presnosti zmapovany v Siroké kinematické oblasti. Analyza
téchto dat pomoci obvyklého, tj. nekovariantniho QPM se zapoctenim korekci pQCD
déva konsistentni obraz nukleont v jazyce partonovych distribu¢nich funkei (PDF).
Siroky soubor experimentalnich dat je v skvélém souladu s pQCD, coz je pozitivni
vysledek, ktery nevyvolava potfebu na metodé analyzy (nekovariantni QPM + pQCD)
cokoliv ménit.

it) polarizovany DIS
larizované terce i svazky, presnou kontrolu stupné polarizace a moznost ménit jeji
orientaci (podélna/pricnd). Z téchto divodi se polarizované strukturni funkce g1, go
podarilo mérit az pozdéji a jejich presnéjsi hodnoty byly ziskany az v pomérné nedavné
dobé [31]— [37]. RovnéZz kinematicka oblast x, Q% v niZ jsou tyto funkce zméteny, je
podstatné mensi, nez v pripadé nepolarizovanych funkci. Je vSak dilezité, ze metoda
analyzy zalozena na nekovariantnim QPM + pQCD se v pripadé analyzy polarizova-
nych strukturnich funkei stretava s nékterymi vaznymi problémy, o nichz se zminime
nize.

Déle je tato kapitola ¢lenéna néasledovné. V casti je popsana konstrukce ko-
variantniho QPM. V ¢astech a nasleduje detailnéjsi diskuse o rozdilech mezi
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nekovariantnim a kovariantnim QPM. V dalsi ¢asti [3.4] je uvedena diskuse o roli orbi-

talntho momentu kvark v kontextu kovariantnitho QPM. Diskusi o dalsich aspektech
kovariantnitho QPM je vénovana ¢ast [3.5]

3.1 Konstrukce kovariantniho QPM

Obecnym zakladem QPM je predpoklad, Zze kvarky lze pti jejich interakci s prochéaze-
jicim leptonem povazovat za (témér) volné. Tato podminka mize byt splnéna pouze
pii interakcich s velkym pfenosem impulsu Q2 (t.j. pti DIS), které se odehravaji v ma-
lém prostorocasovém intervalu, kdy pro kvarky plati tzv. asymptotickd volnost. Déale
predpokladame, ze rozdéleni hybnosti kvarki ma v klidovém systému nukleonu rotacni
symetrii, zavisi tedy pouze na absolutni hodnoté hybnosti |p|, nebo na energii pg, coz
je ekvivalentni, protoze p, = +/m? + p?. Piftomnost kvarkt tedy lze popsat sadou
rozdélovacich funkei G (po)d®p, které vyjadiuji pravdépodobnost, ze kvark (index k

vyjadiuje flavour kvarku a antikvarki) lze nalézt ve stavu

1 ¢)\n 1 2]70
)\ — . — n— )\ ns N - 31
’ (p’ n> N ( popfm ¢An ) ’ 2n0-¢>\ gb)\ Po+m ( )
s polarizaci A = £1/2, gzﬁir\ngzﬁ,\n = 1 ve sméru n, ktery je urc¢en smérem polarizace

nukleonu. Poznamenejme vsak, Ze uvedenad pravdépodobnostni rozdéleni obecné za-
visi i pfeddvaném Etyfimpulsu Q2. Jinymi slovy, obraz nukleonu zavisi na dosaZeném
rozliseni. Dale nahradime energii kvarku v klidovém systému nukleonu invariantnim
vyrazem Pp/M a predpoklddame jednofotonovou vyménu. Nésledny vypocet struk-
turnich funkci odpovidajicich tomuto zjednodusenému obrazu je pak v podstaté jiz jen
technickou tlohou. Vyvoj feseni této tlohy pro nepolarizované a polarizované strukturni
funkce je dokumentovan v pracech [A5]— |A9], viz ¢asti 3.1.1-3.1.5. Soucésti posledni
z nich je i shrnuti jednotlivych kroki a vysledkii.
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The alternative to the standard formulation of the quark-parton m@eM) in the infinite momentum
frame is suggested. The proposed approach does not require any extra assumptions in addition, consistently
takes into account the parton transversal momenta, and does not prefer any special reference system. The
standard approach is involved as a limiting case. As a result, the modified relations between the structure and
distribution functions are obtained together with some constraint on their shape. The comparison with experi-
mental data offers speculation about the values of the effective masses of quarks, which emerge as a free
parameter in the approadi80556-282197)02707-0

PACS numbdrs): 13.60-r, 12.15.Ff, 14.65-q

I. INTRODUCTION physical point of view together with a glance at the experi-
mental data on proton structure functibp. The last section

The deep inelastic scatterin@IS) of leptons on the shortly summarizes the possible conclusions.
nucleons and nuclei has been, since the early 1970s a pow-
erful tool for the investigation of the nucleon internal struc-
ture and simultaneously has served as a crucial test of the
related theory—QCD. For recent results in this field see, e.g., First of all let us recall some basic notions used in the
[1] and citations therein. description of DIS and the interpretation of the experimental

The quark-parton mod€¢QPM), motivated by the experi- data on the basis of QPM. The process is usually described
mental data, is extraordinarily simple if formulated in the (see Fig. 1 by the variables
reference system in which the nucleon is fast mo\itige
infinite momentum framéMF)]. Namely, in this system the 2
Bjorken scaling variablexg can be approximately identified 9°=—-0Q%=(k—k")?, Xg=z—.

d h . 2Pq
with the momentum fraction of the nucleon carried by a
parton and experimentally measured structure functions can
be easily related to the combinations of distribution functions AS a rule, lepton mass is neglected, il€=k’>=0. An
expressed in terms ofg. The distribution functions ex- important assumption of QPM is that the struck parton re-
tracted from the experimental data by the global analysignains on-shell, which implies
(see, e.g.[13]) relying on QPM+QCD represent basic ele-
ments of the present picture of nucleons and other hadrons. q%+2pg=0. (2.2

In this paper we attempt to cope with the not only aes-

thetic drawback of the QPM which in the standard formula-gjq e, scaling variableg can be interpreted as the fraction

tion has a good sense only in thareferred reference ¢ o nycleon momentum carried by the parton in the IMF.

system_—the IMF. T_he idea of alternatlve_s_t_o the QPM POSThe motivation of this statement can be explained as follows.
tulated in the IMF is not new; the possibility to obtain in | ot s denote

some approximation the structure and distribution functions
from a definite parton model formulated in the nucleon rest

II. KINEMATICS

(2.9

frame has been shown, e.g.,[i43,5 and recently if4,6]. p(lab)=(po.P1.P2.P3), P(lab)=(M,0,0,0,
We suggest rather a consistent modification of the general
standard formulation which does not adhere necessarily to q(lab)=(Qqq,01.45,03). (2.3

the IMF and simultaneously does not require any special
assumptions in addition. The bases of our considerations are
only kinematics and mathematics.

The paper is organized as follows. In the following sec-
tion, the basic kinematic quantities related to the DIS are
introduced and particularly the meaning of the variatyds
discussed. In Sec. Il we formally apply the standard as-
sumptions of the QPM to the nucleon in its rest systéah)
and compare the results with those normally related to the
IMF. Section IV is devoted to the discussion from a more

FIG. 1. Diagram describing DIS as a one photon exchange be-
*Electronic address: zavada@fzu.cz tween the charged lepton and parton.

0556-2821/97/5&)/4290(10)/$10.00 55 4290 © 1997 The American Physical Society
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the four-momenta of the parton, nucleon, and exchanged = 2 2 2
photon in the nucleon rest systdfab). The Lorentz boost to ﬁ: \/(9 — (%) = \/(%—M—Z) X5— ﬂxs
the IMF (in the direction of the collision axigyives v v Q ko Ko
p(inf)=(p5,p.P2.pa),  P(inf)=(Py,P1,0,0, <ig?; 213
q(inf)=(dg,q;,d2,4s3), 2.4
therefore, forM/ky~0 we obtain
where, forg——1,
Po=P1=¥(Po+P1), Pe=Pi=yM, y=1/1-p2 PA _PotPi_ 2pTXBCOSP (2.14
(2.5 My M Q2
If we denote and
! ! +
x=bo_Pi_PotPu (2.6 . 2prXg
Py Py M Xg=X— NeE COSp. (2.19
then one can write - ) )
Thereforexg can be at sufficiently higiQ? considered as a
p(inf)=xP(inf)+(0,0,p5,p3). 2.7 good approximation ok (and vice verspa At the end of the
o next section, we shall suggest how to treat this correction
Now let the lepton have initial ~momentum more accurately.

k(lab)=(kq,—k0,0,0). If we denote v=ko—k; and
g.=q;, theng, <0 and from Egs(2.1), (2.2), it follows

._Pa_povtlap: prar
B Pq My My’

(2.8

Let us note, the parametgI[Eq. (2.6)] can be expressed
also as

= Po+ Py
- Po+P;

(2.16

where py, gy are the parton and photon transversal mo-and identified with the light cone variable, which can be

menta. Obviously,

k72: (k_q)2: k2+ q2_2k0V+ 2k0|qL| :0’

la| Q? M
T* 2k0V71+ k—OXB. (2.9
Using this relation Eq(2.8) can be modified:
Po+P1 P1_ PrlrT.
Xg= M k—OXB— m, (2.10)

therefore, if the lepton energy is sufficiently high, so
pi/ko~0, one can write

o X— Pr Ot
B Mv

CoSp, (2.11

where ¢ is the angle between the parton and photon mo-

menta in the transversal plane.

So, if parton transversal momenta are neglectgdeally
represents the fraction of momentu@6). In a higher ap-
proximation the experimentally measurggl being an inte-
gral overg is effectively smeared with respect to the fraction
Xx—which is not correlated withp. An estimation of the

second term in the last equation can be done as follows.

Because
E] 2
2_.2_ 712 ul
g°=v*~|al%, (V)

then Egs(2.9), (2.12 give

am?
Cilsd

2
1 %1y
v

(2.12

expressed also in terms of rapidity and transversal mass:

m 1 potp
x=—rexgy-yo), m=ypi+m? y=ih =,
M 2" po—p1
(2.17

wherey, denotes the proton rapidity. In this form the param-

eterx is invariant with respect to any Lorentz boost along the
collision axis.

Now, if we assume parton phase space is sphefinal
lab) and a rather idealized scenario in which the parton has a
massm?= p3— p3— p3— p3, then further relations can be ob-
tained.

(1) variable x From Eq.(2.6) and the conditiorx<1, it
can be shown that

N

m
X>W, (2.18
MZ_ m2
VP1t P2t P3<=pm= oM
2 2 m?
pr<M M2 (1—x). (2.19

Obviously, the highest value gf; is reached ifpr=0 and

vpitmipy

M

(2.20

which gives
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M2—m? momenta on the mass shell. This is the standard assumption

Pimac Pm= "5 (2.2 of the QPM, but whereas in the IMF parton masses are “hid-

den,” in the description related to the lab, the masses will be

Then spherical symmetry implies present. In the next section we shall discuss to what extent

the results obtained for this idealized picture could be ap-

‘/p§+ p§+ pgg Pr» (2.22 plied for a more realistic scenario.

i.e., the first relation in Eq2.19 is proved. Apparently, the
minimal value ofx is reached fop;=—p,, andp;=0. Af-
ter inserting Eq(2.6), one gets Eq(2.18. Finally, the rela-
tion (2.6) implies

_M2X2_m2_p$

which, inserted to the modified relatiqg.22),
2_m2\2
pi+pis M (2.24
1 T 2M .

after some computation gives the second relation in Eq.

(2.19.

(2) variable x5 . Let us expresgg in the lab

_6—) l — P
_Pd_ pov pq:_( erz?) 225

My M

xB—Pq—

and estimate its minimal value. With the use of Eg.12),
we obtain

1 4M?2
XBBM(\/mZerﬁ]—pm\/lJrFxé). (2.26
Since
ZIVERS 2m?
1+?—XBS1+?—XB (2.27
and
1 . m?
v (VM P = Pm) = 1z (2.28
relation(2.26) can be rewritten
m*> 2Mp, , m* 2Mp, m*
A VAT S VAN C L VL
m? 2p, m?
:W( ‘Wmaz)' 229

i.e., for m®><Q? the lower limit of xg coincides with the
limit (2.18.

lll. DISTRIBUTION OF PARTONS
IN THE NUCLEON REST SYSTEM

In this section we imagine partons as a gaisa mixture

of gase} of quasifree particles filling up the nucleon volume.
The prefix quasi means that partons bounded inside the

A. Deconvolution of the distribution function

Let us supposé&(x) is the distribution function of some
sort of parton given in terms of variable [Eq. (2.6)] and
these partons are assumed to have the magdkthe spheri-
cal symmetry is assumed in the hadron rest system and
G(poy)d3p is the number of partons in the element of the
phase space, then the distribution functlefx) can be ex-
pressed as the convolution

Foo- | 5( p°:,|p1—x)e(po>d3p,

po=\mZ+ pZ+p3+p3.

Using the set of integral variableb,pg,¢ instead of
P1.P2,P3,

(3.9

pi=h, p,= Vp(z)_mz_hzsin(p,
ps=/p3—m?—hZcosp, (3.2
the integral(3.1) can be rewritten
Emax [(+H p0+h
F(x):27rf f 1 —X|G(pg)podhdpy,
m -H M
H=p3—m>. (3.3

First of all, we calculate the inner integral within limits
+H depending omp,. For givenx andp, there contributes
only h, for which

pot+h=MX, (3.9
but simultaneouslyr must be inside the limits
—po—m’<h=\p5—m’ (3.5
which means, that for
Po+ Vpg— M’ <Mx (3.6
or equivalently for
Mx m?
Po<é= >+ Sy 3.7

the considered integral gives zero. Hog>¢, when both
conditions(3.4), (3.5 are compatible for some valldg the
integral can be evaluated

+H [pg+h
ffH‘S( Mo

G(pPo)podh=MG(pg)py. (3.9

nucleon behave at the interaction with an external photon
probing the nucleon as free particles having the four-Therefore integra(3.3) can be expressed
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Emax
Foo=27M | “G(popadre. (39 Ftq

&

Let us note, an equation similar to this appears alreadi]in

but with structure functior,(x) instead of the distribution

one. We shall deal with thE, in the next subsection, where

it will be shown that the corresponding equation is more

complicated. For a comparison, see als¢ where on the MY M . 1

place of G(py) the statistical distribution characterized by

some temperature and chemical potential is used.
Next, from relation(3.7) we can expresx as a function

&
+ / 2_m2
Xt:L- (3.10
M
Using relationg2.18), (3.7), one can easily check
m m? M2+ m?
12X+Bmzx,zw, Emaxzw>§2m.
(3.1

First, let us inserk . into Eq. (3.9

F "G (po)podpy. (3.12

£+ (E=? c
T) =27M L

Differentiation in respect t@, gives

§+\/§2—m2> (3+ 1 )
M f §2_m2 .
(3.13

Now we integrate the densit®(py) over angular variables
obtaining

1
G(g):_ 2’7TM2F’

P(po)dpo= fne(po>d3p=4we(po)podeo
(314

and after inserting into Eq3.13, we get

Po+ VPG—m?| po+ Vpg—m? %
T

(3.1

Second rook_ gives a very similar result

Po— vpé—mz) Po— VPo—m” dpy

P(po)dpo=+2F’

M M M
(3.1
From the definition
+\JpZ—m?
X.= w, (3.17

M

the useful relations easily follow:

FIG. 2. Example of the function obeying Ed8.23), (3.24).

+ —_M21 + - M ’ + - M ’
(3.18
dp, 1 m? dx, dx_
V‘z(l Ma | e T TR
(3.19
Now, Egs.(3.15), (3.16 can be joined:
_2_,
P(Po)=F 11 F' (X:)Xo . (3.20

Why do the two different partial interval8.11) of x give
independently the complete distributi®{p,) in Eq.(3.207?
It is due to the fact that, e.gx,_ represents in integrgB.1)
the region

JpZ+pZ+mi+p, m
T—x_g K (3.2)
given by the paraboloid
pr=2mlp,|, p=0, (322

containing complete information abou(py) which is
spherically symmetric. A similar argument is valid far.
representing the rest of sphere. Equati(®45), (3.16) im-
ply the similarity of F(x) in both intervals,

F/(xo )Xy _—

OO, 323

which, with the use of the second relation in E8.19, can
be easily shown to be equivalent to

F(xo)=F(x-). (3.29

The relation(3.20 implies the distribution functiorf(x)
should be increasing fomf/M)?<x<m/M and decreasing
for MM <x<1, e.g., as shown in Fig. 2. Now let us calcu-
late the following integrals.
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The total number N of partons:

Emax
N= f P(po)dpg
m

J‘l
m/M

1 1
=—J F’(x+)x+dx++f F'(x;)x_dx, .
m/M m/M

2

m
F’(x+)(x+—M7X—+>dx+

(3.29

The last integral can be modified with the use of Eg§s19),
(3.23:

Xy

1 1 d
f F’(x+)x,dx+=—f F/(x_)x%
m/M m/M X

+

m?/M2
:f F’'(x_)x_dx_. (3.26

m/M

Then integration by parts gives

1 1
Nz—f F’(x)xdx=J F(x)dx. (3.29
m2/M2 m2/M2

The total energy E of partons:

Ema)(
E:fm P(Po)Podpo
1 m? \ M
7_Jm/MF (X+)(X+—M2—X+) ?(x++x_)dx+

__M ! ’ 2 _ 2
_ ZJWMF (X)0O2 —x2)dx, . (3.28

A similar procedure as foN then gives the result

Mfl 5 1
E=—— F’xxdx=Mf F(x)xdx.
2 m2/M2 ( ) m2/M?2 ( )

(3.29

Therefore, both descriptions based either on the IMF variable
x or the parton energyy in the lab give consistent results on
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e4

1
9* 4/(kp)2—mZm?

do(e” +1)= K*AL g2

3’

X +q)2-m)———— .
S(pra)*=—m)zrm s, (33D
where the electron tensor has the standard form
q2
K*f=2| kek' P+ k’“k5+g“ﬁ? (3.32

and the remaining hadron and lepton tendbfs;, L4 can
be written in the “reduced” shape

PP
WaB:WWZ_gaﬁwll (333
LaB:4papB_Zgaqu' (334)

The general assumption that the scattering on the proton is
realized via scattering on the partons implies

d(r(e_—l-p):f F(&)do(e +1)dé¢, (3.39

whereF(¢) is a function describing distribution of partons
according to some paramet®r £. Now, if F(£) is substi-
tuted by the usual distribution function and we assume

Pa~€P,, (3.39

then it is obvious, that Eq.3.35 will be satisfied provided
that

W, 1 F©
PaPsiy2 _gaBW1:Mf T(2§2Papﬁ

~Jap EPQ)S((¢P+0)%—mP)dé.
(3.3

the total number of partons and the fraction of energy carriedor simplicity in this equation, and anywhere in the follow-

by the partons.

B. The structure function

An important connection between the structure and distri-
bution functions can be derived by a féequivalent ways,
see, e.g., textbooK§—9|. In this paper we confine ourself to

ing, the weighting by the parton charges is omitted. In fact
Eq. (3.37 is just a master equation ifv] [lesson 27, Eq.
(27.4)], from which the known relations are derived:

MW, (g2, v) = FZ)((X),

XF(X)=F2(x)=vW,(q?%,v),

the electromagnetic unpolarized structure functions assuming
spin 1/2. The general form of the cross section for the scat- -q?

teringelectron + protonandelectron + pointlike Dirac par-

ticle can be written
do(e+p) et 1
g e = — e
P a* 4{(kP)2—mZm?
3kr

X K aB R
KW, gd7M 2k6(277)3’

(3.30

(3.39

= oMy

Here, let us point out, this result is based on the approxima-
tion (3.36), which is acceptable in the IMF, but only pfar-

ton transversal momenta are neglecteitctually, relation
(3.36 would be exact only in theunrealistig¢ case, when the
partons are without any motion inside the nucleon, then the
distribution function describes momenta fractiongiry ref-
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erence framéincluding the IMB, therefore it also describes W, — W, + »(2MA+ vB)
the distribution of parton massés=-m/M.

Before repeating the above procedure for our distribution 1 (G(py)| , Mxv pq 3
G(po)d®p in lab, one has to account correctly for the flux = M_vf “po | PoT T) S\ vy ~X/d°P,
factor corresponding to partons moving inside the proton (3.44)
volume. Fork=(kg, —kg,0,0) the flux factor in Eq(3.31),

I W,o—W;+(My—2M?x)A—2MxvB
- = = ’
4\ (kp)*—mgmi’=4Ko(Po+ P1) =4KoPo(1+vy) .39 1 [ G(py) Mx»| [ pq .
“My) Tpo | POMXT O, XA
corresponds for some fixgulto the subset of partons moving (3.45

with velocity v =p/p,. If this velocity has the opposite di-

rection to the probing electron, then after passing through thi which the § function from the integra(3.41) is expressed
whole subse6(p,)d3p, the electron has still not reached the o %
backward boundary of the proton, where, meanwhile, the 2 2y 2y _ L
new partons appeared. And on the contrary, if the velocity of (p+a)’-m)H=a(2pa+a’) 5( 2M V( Mv 2M v))
the subset has the same direction as the electron, then not all

of these partons have the same chance to meet this electron. _ 1 5(ﬂ—x) (3.46
Namely, the partons close to the backward boundary are ex- 2Mv \Mv ' ’
cluded from the game sooner than the electron reaches them. .

Quantitatively, the number of partons limited by the proton!’ We define

volume and having a chance to meet the electwith ve- pol! [ pg

locity ~1) will be VJ(X)EI G(po)(mo) 5(——x)d3p, j=—1,0,1,

Mv
dN=(1+v,)G(po)d3p. (3.40 (3.47)

) . . . then the solution of the s€8.42—(3.45 reads
Including this correction to the flux factdB.39, then in-

stead of Eq(3.37), we get the tensor equation v m m2x
w MW= o | V2 X )‘27
2
PaPpygz ~9apWiTA(Pols+ Pgda) +Baadps 2Mx 2M2x
+Vo(X) ” +Vy(x) i (3.48
Po [ G(po) 2 o3
=M Tpg (2PaPpT0ap PAI(pFa)"—mIdp, " L2 . M 2m2X
i Wo=X o) | VO S ime Y T2
= JmZ+p2+pi+p2 34
Po P1t P21 P3 (341 N 6MX+V 6M2x ia
for which Eg. (3.36 is not required The terms with the o) v 1(x) ve |’ (3.49
functions A and B do not contribute to the cross section ) ) 5
(sinceq,K*#=qzK*#=0), but generally must be included o v 1/m 5|, M°X
to ensure the equation consistence if the tensors are not VMA=— 2MX+ v V1) 2 W+3X +M_v
gauge invariant. Also let us note, a correction similar to Eq.
(3.40 was not used in Eq3.37) since due to Eq(3.36), all —vy02x 1- Mx v (X)?’MX (3.50
the partons in the applied approach have the same velocity as 0 v ! v |’ '
the proton.

Now the contracting of Eq.(3.41) with tensors se v \? 1/ m? L) mPx
g%,q°q”,P*P#,P“g” gives in the result set of four equa- A Erviens RRAERTCY I Fve At R ven
tions

Mx
1 G For the next discussion we assume M, then
=—fﬂ(m2—2Mxm5 P9 )aep,
MV po MV X
(3.42 PW,=F,(X) =X?V_1(X), MWlEFl(X):Evfl(X),
(3.52

14
oMx Vot Wi—2Mp(A=XB) so it is obvious the Callan-Gross relatiorn =F, holds in
this approximation.
1 J’ G(Ppo) ( pq )dSp (3.43 In the next step, following Eq2.14), we accept the ap-

“Mv) o (Mxv) 8| 7, =X proximation
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P9 PotPp: (3.20] rather narrowly peaked around the poirts=m/M
My~ M (3.53  andpy=m. Then forx~x, Eq. (3.59 gives
’ 2 ! ’
then the integral$é3.47) can be expressed F(x)= 1 FZ(ZX) i ﬁ :} FZ(ZX) (Xo+Xo) = Fa(x)
. 2\ x X) 2 X Xg
! +
VJ(X)ZJ G(p")(%) d %X)“p, j=—10.1. (360

(3.54 from which the second relatiof8.38 follows as a limiting
' case of Eq(3.59:
This relation, with the use of Eq$3.1), (3.20 implies
_ XoF (X0) ~F2(Xo). (3.60
J 2
%) P(po)= IMVJ’(xt)xi , j=-1,01, (355 Now, in the realistic case when the distribution functions are
broad, the exact validity of Eq.3.37) again requires static

wherex.. is defined in Eq(3.17. The relations(3.55 and partons, therefore the corresponding distribution function

(3.18 give also represents a spectrum of masses. But then obviously, the
above procedure for a singhla can be repeated with spec-
Vi (x) (po)ik X, +x_ |7k (x xg)i—k m trum of massed=(xo) giving in the result instead of Eq.
Vi(x) =\m = 2 =3 +2x » Xo= (3.61) the relation
(3.56
. . . J XOF(Xo)é(X_Xo)dXo:J F2(Xg) 8(X—Xq)dXg,
In the previous section we have shown such functions as Eq.
(3.54 obey the relation3.24), which means in particular, (3.62

that the functions have a maximum ®§ and vanish for . v.oh impli
2 . . plies
x=Xg. Therefore the same statement is valid also for func-

tionsF,/x2 andF, /x from Eq.(3.52: XF(X)=F,(X). (3.63
Fa(xy)  Fa(xo)  Fa(Xy)  Fa(xo) In this sense the approach based on Bd7) can be under-
X2 X X, X (357 stood as a limiting case of that based on E341.
This means that the structure functions of our idealized had- C. The high-order corrections

ron alsq have the maximum ap or higher, if the_peak of The considerations of the previous subsection are based
_\/_1(x) Is not rather sharp. Obwously_, the 'peak will be Sh""rpon the approximatior{3.53 which in the result gives rela-

!f P(P°)¢O for po=m. At the same t|me,_ it should be ke_pt tions (3.58), (3.59. Actually, we had to calculate integrals

in mind, t_hat due to Eq(2._15) any funct|on_ expressed N (3.47) instead of(3.54 differing in the argument of thed
“real” variable xg Will be slightly smeared in view of this ¢ 61 according to Eq2.14). The integralg3.47) cannot

function expressed ir. That is just the case of the integrals po oqved analvti : :
) ; ) ytically according to the recipe for E81),
(3.47) approximated by Eq3.54). But this smearing should |\, ever, in principle their solution can be obtained by itera-

be quite negligible for very lowg and highQ?, see the end tions. For example, Eq3.52 reads

of Sec. Il.
Further, our considerations have started to move in the M pq
previous section from the distribution functiogR(x) for Fz(X)=X2f G(po)p—é(m—x)d%. (3.64
which we have obtained relatid8.20. The combination of 0
this equation with Eqs3.52, (3.59, and(3.18 gives Let us have somé&,, then the algorithm of iterative proce-
dure could be the following.
P(pg)= — i( Fz(X)) ,(x2+x2) _ Pot Vpo—m? 0 step:G, is given by Eq(3.58, G is related toP by Eq.
0 M x? o/ M ' (3.14.
(3.58 1 step: InserG, into Eq. (3.64. The result of the inte-
gration is some functionf,(x). Make the difference
, 1(Fy(x))’ X3 A,F,=F,—f; and insertA;F, into Eq. (3.58); the relation
Fi(x)= 5(_xr> (X _) (3.59 gives the corresponding correctidnG. The result of this

iterative step isG;=Gy+A;G. Then the next steps will
How do we compare the last equation with the standard refollow by analogy. In the end, the correcté€dl should be
lation (3.38 for F andF,? As we have already stated, the obtained.
standard approact8.37) is exact in the case when the par- A more detailed discussion of the considered correction
tons are static with respect to the nucleon, i.e., wherexceeds the scope of this paper and requires further study.
x=m/M. Equation(3.41) itself is more exact, but any fur- The correction should be rather small, but let us remark that
ther procedure with it requires the masses of all the partonis evaluation requires some assumption about nmager
in the considered subset being equal. Therefore for a conthe spectrum of masse®\lso, let us note that this correction
parison, let us consider first the extreme scenario when thegether with term®(1/v) in Egs.(3.48), (3.49 introduces
parton distribution functions (x) and P(p,) are[see Eq. into the structure functions som@? dependence having
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purely kinematic origin(we still assumeG being Q? inde-
pendent Obviously, all these corrections vanish for
Q?—ee.

E,=18 GeV
10 | o=4"

IV. DISCUSSION

Are the considerations suggested in the previous section
compatible with the assumptions and philosophy of the
QPM? Is it justifiable to speak about the distribution function
in lab? First, let us shortly recall the standard interpretation
of DIS in the framework of QPM.

In the classical experiment, e.g., BCDM%0] muons 0. Of4 : 0:8 L >
scatter on the proton target at rest in thboratory system X
From measured angles and energies of the scattered muons,
one determines the invariant cross section as the function of FIG- 3. The structure function for quasielaséicd scattering,
kinematic invariantsg,Q2. Next, from this cross section S€€ text.
the electromagnetic structure functién(xg,Q?) is evalu- )
ated. The fact that for sufficiently bi@?, the structure func- the postulates of QPM, nevertheless, look on some experi-
tion (approximately scalesF,(xg,Q%)~F,(xg), leads to mental data. Be_fore coming to the proton structure function,
the conclusion that in the experiment, the scattering of twd®t us look at Fig. 3, where the “structure function” of the
pointlike particles takes place. This experimental fact is adeuteron measured in quasielasécd scattering[11] is
basic motivation of the QPM in which it is postulated that Shown, clearly proving the presence of two nucleons in the
the nucleon contains pointlike electromagnetically activelucleus. The similarity with the general picture Fig. 2 is well
particles (partons, which can be for sufficiently higtQ? seen. The kllnematlcs of the two nucleons in the deuteron rest
treated as effectively free and their interaction with the muorsyStém implies
is described by the Feynman diagram with one photon ex-
change. That also means the struck partons remain on the Vm2+|ps 2+ Vm2+|pal2=Mp,  pi=—pa (4.1)
mass shell. These assumptions should be fulfilled first of all

in the system, where our experiment is done, i.e., in lab. Ofyherem should be understood as soeféective masaihich,
course, another point is, that in this system the picture ofje to binding is slightly less tham /2. This difference
partons is in some respect obscured by the fact that we d@y,ghly corresponds to the depth of the potential if a nonrel-

not know more about the kinematics of partons, their mo-yyistic approach is used. From Egh.1) the kinematically
menta, or energies. The picture is quite clarified when weyowed region for corresponding easily follows:
change over from lab to the IMF. Then the masses of partons

do not play any role and the energy is the same as the mo-

Normalized structure function

mentum. Simultaneously, the invariant parameteobtains 0.5— AX<X<0.5+AX szi 1— (Z_m) .

simple physical sense—the fraction of the proton energy that ' 2 Mp

is carried by the parton. Only now are the quark-parton dis- (4.2
tribution functions introduced, and one can show their

known connection with the structure function. In the case of partons inside the nucleon, the situation is

The difference between this standard approach and oursuch more delicate. The interaction among the quarks and
can be well seen by comparing Eq8.37) and (3.41). The  gluons is very strong, the partons themselves are mostly in
general philosophy according to which the scattering ofsome shortly living virtual state, is it possible to speak about
charged lepton on a nucleon in DIS is realized via scatteringheir mass at all? Strictly speaking, probably not. The mass
on pointlike charged partons is common for both equationsin the exact sense is well defined only for free particles,
The actual difference is rather only technical consisting inwhereas the partons are never free by definition. Therefore
the choice of integration variables and approximations enlet us try to speak at least about affective massBy this
abling to evaluate the integrals. term we mean the mass that a free parton would have to have

The practical consequence of a more simplifying ap-to interact with the probing lepton identically as our bounded
proach based on Eq3.37) is that the resulting picture has one. Intuitively, this mass should correlate @. A lower
good sense only in the IMF where also the problem of partorQ? allows more time and space for the struck parton to in-
masses is completely separated, which can even be usefulteract with some others, as a result the energy is transferred

On the other hand, the approach based on(Bd.l), re- to a greater system than the parton itself. On the contrary, the
quiring in addition only an assumption about the nucleonhigherQ? should mediate interaction with a more “isolated”
spherical symmetry, takes consistently into account, partoparton.
transversal momenta and is not confined to some preferred Now let us confront the formulas from the previous sec-
system(even though our results are presented in.ldmere  tion (with suggested sense of mas} with the experimental
is one important consequence, namely in this description thdata. In Fig 4 a recently obtained picture of the proton struc-
parton masses, or more exactly the ratitM appeared as a ture functionF, [12] is shown. Evidently, this figure does
free parameter. not exhibit any peak corresponding to E8.57 or Fig. 3.

Any speculation about parton mass already goes beyontlhere are two extreme alternatives.
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o e T e 20<Q?<1600 Ge\l. (4.5
2 4.5 GeV 6 e | 856V | 12 GV |
! T I | ] Obviously, this scenario is less restrictive than the first one.
o o o — It is possible, that the real case is somewhere between the
2 e T seer T sser T y e ] two mgntiqned extremes. At th(_a same time, f@é_depen-
‘ dence in Fig. 4 could be qualitatively understood in the man-
1t T + + . 1 ner suggested above: the higl@t prefers to mediate inter-

actions with partons having less effective mass; therefore, for
I R A A R higher Q? the lowx region should be more populated. Ap-

50 Ge¥* 65 ger* 80 gev* parently, the quantitative expression of this correspondence
A | is a problem of dynamics.
4 v ¢
2r 200 Gev* | 400 ce® | 800 e | 1600 GeV® | V. SUMMARY
e 5 1 - 10w 1 In the present paper we have discussed a connection be-
) 5 ! 2 s tween the parton distribution functions ordinarily defined in
bt bl it bkt the infinite momentum frame and the analogous functions
100 1000 1010710 roromo x defined in the hadron rest system. Assuming spherical sym-
metry of the hadron and an equal effective masef all the
FIG. 4. The structure functioRi,(x,Q?) taken from[12]. partons of the considered sort we have shown the following.

(1) There exists unambiguous relation between the distri-
bution functions defined in both reference systems.

(2) The proposed approach taking consistently parton
Sransversal momenta into account gives the relation between
the (electromagneticstructure and the distribution function,
(2) The concept of effective mass reflects, even for fixe omewhat modified in regard of the standard one. However,

S ) he standard relation is involved in that of ours as a limitin
Q?, some distribution rather than a single value. Then the 9

o - o case. The approach is not connected to any preferred refer-
structure function is some superposition of curves similar to

that in Fig 2 , but with different positions of their maxima. ence system and explicitly involves rat’'M as a free pa-
Such superposition could be generated not only by differen@meter. . .

flavors, but also by the components commonly denoted by (3 Within our approach in thez structure functions, we
the term valence and sea quarks with distribution function§ave identified some rather sma@);-dependent terms hav-
given, e.g., in[13]. We shall not discuss the scenario of iNg purely kinematic origin.

effective mass distribution in general, but only check one (4) The resulting relations pose the constraint on the
extreme: the case of static partons mentioned just below Eghape of structure and distribution functions, which implies,

(1) The effective massn/M of quarks can be for given
Q?, well represented by one number. Then, obviously thi
value should be below the experimental limit>of~10"3—
1074

(3.39. These partons exactly obey the equatmp=xP,,. in particular, that the functions have the maximum at
Obviously having measuref, from the limitx=L, one can Xx~m/M and vanish fox<m? M?.
estimate the mean value Further, we have compared our results with the data on

proton structure functionK,) assuming the two rather ex-
treme scenarios.

(i) The effective mass is for a fixe@? well represented
by one number, then the ratim/M is below presently
reached limit ofx (10~ 3-10"%).

(i) The effective mass is at gived? represented by some
The numerical calculation with the function fitting the data in distribution and, moreover, the partons are static. Then the
Fig. 4, present data suggest the value)/M should be, at most, of

order 10°2.
Simultaneously, th€? dependence of the structure func-
F2(x,Q%) =[3.0%%7+0.14 191 -2.93/x) tion is qualitatively interpreted as a result of the dynamic

X (INQ2—0.05I7Q2) |(1- )% (4.4 correlation of the effective mass aqf.

(m) SIXFOodx  [iFa(x)dx
M S TIF0dX | THF(0/x]dx’

4.3
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Proton spin structure in the rest frame

Petr Zavada
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It is shown that the quark-parton model in the standard infinite momentum approach overestimates the
proton spin structure functiog,(x) in comparison with the approach taking consistently into account the
internal motion of quarks described by a spherical phase space in the proton rest frame. Particularly, it is shown
the first moment of the spin structure function in the latter approach, assuming only the valence quarks
contribution to the proton spin, does not contradict the experimental [#2856-282(97)02821-X]

PACS numbes): 13.60-r, 13.88+e, 14.65--q

I. INTRODUCTION Il. SPIN STRUCTURE FUNCTIONS

In our papef9] the master equatiofi3.41) was based on

The proton spin problem which has attracted significanrthe standard symmetric tensai83.33 and (P3.39 corre-

attention over the last few years was triggered by the Surprisg;,nqing to the unpolarized DIS. After the introduction of
ing results[1] of the European Muon CollaboratideMC),  q spin terms into both the tensdisee, e.g.[10], Egs.
which analyzed data on polarized deep inelastic scattering33_9, (33.10] our spin equation reads

(DIS). Since that time hundreds of papers have been devoted

to this topic; for the present status, see, €.8,3] and the W,
comprehensive overviey]. PaPs—5—GapWiti€ap o0 s"MG,
The essence of the problem is the following. From the M
very natural assumption that proton spin is created by the G,
composition of the spins of three valence quarks being inan  +(Pqs’—sqP’) 1| + A(P,0s+ Psda) +Bdads

s state, one can estimate the value of the first morb&raf

the spin structure functiog?(x): Po [ G(p)
P 0i) :VOJ “pg (2PaPs= g pa) 8((p+q)°—m*)d3p
1 Po [ H(p).
r§’=f 9P(x)dx=0.17. (1.1) ) oo | €000 MW S((p+q)°—m?)d3p,
0

(2.9

In fact, such a value was well reproduced in the SLAC eX_v_vhereG andH are related to the polarized quark distribu-
periment[5] preceding the EMC. Nevertheless, the EMC,tlons
covering also a lowex region, has convincingly shown that
the first moment is considerably lowdr§=0.126+0.18. In G(p)=2 eZh/(p)+hi(p)], 2.2
addition the latter experimeni$,7] gave values compatible J
with the EMC. Such values can hardly correspond to the
concept that proton spin is a simple sum of the valence spins. H(p)=> ejz[h}(p) — hjl(p)], 2.3
In fact, a global fit[8] to all available data evaluated at a ]
commonQ? in a consistent treatment of higher-order pertu- . .
bative QCD effects suggests that the spin carried by th@nd the spin four-vectors satisfy
quarks has a value of less than one-third of the proton spin.
So the question is, what is the proton spin made of?

In this paper we discuss the spin structure functions in thgqyation(2.1) requires, for the spin terms,
approach[9] based on the proton rest frame and make a
comparison with the standard approach based on the infinite G,
momentum framéIMF). We do not attempt to account for SUMGlJF(quT_SqF’T)V
all the details important for the complete description of the
polarized proton such as, e.g., the constraints resulting from M f H(p)
axial vector current operators, but we rather try to isolate the  ~ 2MvJ p,
net effect of the oversimplified kinematics in the IMF pic-
ture. Since this paper should be read together W8th for ~ where we use for thé function the relatior(P3.46.
convenience we refer to the equations and figures in the pre- Now, to be more definite, let us consider a simple sce-
vious paper simply with prefix P, e.g., see Eg3.41J. nario assuming the following.

s,sf=w,wt=—-1, s, P=w,p*=0. (2.9

o ﬂ_ 3
w 5(Mv x)d p, (2.5

0556-2821/97/5@)/58345)/$10.00 56 5834 © 1997 The American Physical Society
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(1) To the functionH in Eq. (2.3) only the valence quarks In the next step we apply the approximations from Eqgs.
contribute. (P2.9 and(P2.19:
(2) In the proton rest frame the valence quarks are in the
s state and their momenta distributions have the same P  PotP1
(spherically symmetricshape for thes andd quarks: Q==r =

= (2.19

1 _ Let us note that the negative sign in the first relation is con-
ha(p)= Eh”(p):h(p)' 2.6 nected with the choice of the lepton beam direction on which
Eq. (P2.19 is based. The opposite choice should give
(3) Both the quarks have the same effective masgs

=p? in the sense suggested[®). In this way it is assumed Pd  Po—P1
that the effective mass of the valence quark is characterized Q1=+, My M (2.1
by the one fixed value; by the end of this paper this point will
obtain a more realistic form. _ ~ and one can check that both alternatives result in the equal
(4) All the three quarks contribute to the proton spin pairsG, ,G,, which read
equally:
H(po) PotP1
1 _ 1 29,(x)=2M?vGy=m f
h—hj=5(h}~hy)=Ah(po)= 5 h(po), 9 : Po \pI_pl
+
Po= VM?+ p%+p3+ p3. (2.7 xé(%—x)d%, (2.17
Since the proton and each of the three quarks have spin one
half, the spin of two quarks must cancel and the spin of the ) H(pg) Pp:1
third gives the proton its spin, so the last equation implies 202(X)=2Mv°G,= *mf b0 oi—p?
0 1
3f Ah(pg)d®p=1. (2.9 %8 Po'\;pl_x &p. (2.18

Th binati ith Eg(2.3) gi
€ combination wi q2.3 gives Let us remark that the integration of Eq2.13 and (2.18

4 1 overx gives on the right-hand sid&kRHS) the integral
H(po)=2gAh(po) + gAh(po) =Ah(po) (2.9

f H(po) P2
Po  p3—p?

f H(po)d3p= } (2.10  Wwhich is zero due to spherical symmetry. Therefore in this
3 . .
approach the first moment @f,(x) is zero as well. In the

. . . ... following we shall pay attention particularly to the function
Now, let us assume the proton is polarized in the dlrectlor‘bJl which can be rewritten

of the collision axis(the coordinate onethen Eq.(2.4) re-

3h—
and d°p=0, (2.19

quires, for the proton at rest, 21— EJ, oo )M\/mg Do+ P1 _X)d3p
s=(0,1,0,0 (.19 ! 3 po Vpo—py | M ’
and, for the quark with four-momentum m
XOZ_. (22()
M
P1 Po
W_< \/pg_pi’ \/pg_pi’o’())' (212 What do our assumptiond)—(4) mean in the language of
the standard IMF approach? [8] (end of Sec. Il B we
The contracting of Eq2.5) with P,, ands,, (or equivalently, ~showed that our approach is equivalent to the standard one
simply takinge=0,1) gives the equations for the static quarks described by the distribution function
h(po) sharply peaked arourd. In such a case the last equa-
m H tion for po~m, p;~0 after combining with Eqs(2.3) and
9,G,= J (Po) Sl 58 ﬂ—x>d3p, (P3.1 gives
2Mv Po Jpi—pi \M¥
(2.13 Pot P2

2gl(x>=f 2 ef[hI(po>—hf(po)]5( v —X)dBp

3 H(po)  Po (pq 5
MGl+VG2—2MVf Po \/pg—pig W_X d>p.

(2.14 :zj: efTf] ()= ;1. (2.21)
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wheref;(x)'s are corresponding distribution functions in the
IMF, so in this limiting case our spin equati@®.20 is also
identical to the standard one, see E3.14 in [10]. On the
other hand, the last equation can be, in our simplified sce-

PETR ZAVADA 56

1 j+3/2
) dx

2
= Vo(X) —==| ——
J ol )J+3/2 1+ x3/x?

jt+1/2 2

nario, rewritten as _ 2xg/x°

= | Vo(x)2 2/,2 2,022 9%

1+xp/x (1+xg/x%)
2 (X)— jh( )5 pl =—f( )_F2val(x)
9 Po If we denotet=x3/x?> andz=1/(1+1?) then Eq.(2.28 can
(2-22) be rewritten as

This relation could be roughly expected in the standard IMF 1 c 12 -
approach and correspondingly F|ab=gJ. Vo(x)4t3252> ( )(—1)'z'dx

1 1
T = f g.(x)dx= 3 f o=z (223

Equations(2.20 and (2.22 are equivalent for the static

—1fv 4322\ ——d
5 o(X)4t°z EX,

quarks, but how do they differ for the nonstatic ones? InWhich implies

accordance with EqP3.54 let us denote

]
vi00= [ nipol| 52| of PP x| otp. (228

then Eqs(P3.52 and(2.22 give

XV_1(x)
3

1
20,(x) = R f XV 1(x)dx.

(2.29

Now, let us calculate the corresponding integral from our

rest frame equatiof2.20):

Ljap= ffh( o) \/ po+p1

Pot P1
M

—x)d3pdx.
(2.26

Due to thes function, the square root term in the integral can

be rewritten as

p0+pl:\/ Mx _\/@(1_&)1/2
Po—P1 2po—Mx 2po 2po

Mx\ S, (—1/2

Z(Z_F’o> ( j

—1jwj 2.2
( )2p0 (2.2

i=o

and using Eq(2.24) the integral is, correspondingly,

Xo [ <
rug ] 5|

_1/2 ) ]+l/2
i )(1)'Vj3/2(x)(§) ax.

(2.28

The integration by parts combined with the relati¢R8.56
gives

X j+1/2
f Vj3/z(X)(§) dx

’ 2(X/2)j+3/2d
fV - BIZ(X)W X

f Vo[ 24

—j- 3/22(X/2)j+3/2

XO d
j+3r X

22x

(2.29

f 1 X ( )
0 x)dx.
l 6 0 ( X2/ 2)2

Simultaneously, since

1 T T (x
fxgvo(x)dx——fxg xVO(x)dx——Lg xV_1(x) 3

X d f % L% d
+§ X=— Xg ,l(X) ?—'—? X
1
:fz V_1(x)xdx,
X0
the integral(2.25 can be rewritten as
1
ive= GJ' Vo(x)dx. (2.30

Let us express the last integral as

1 Xg 1
fz Vo(x)dx= f ) Vo(x)dx+f Vo(x)dx
X Xg Xg

and modify the first integral on the RHS using substitution

y=x2/x:

JXOV d Jl (X )Xod
X)ax= .
2 o(X) y Vo vy y

Now let us recall the general shape of the functiéd24)
obeying Eq.(P3.29, which implies

X5
V0<7 =Vo(Y),

therefore instead of Eq2.30 one can write
2 2
X2 4X§
dx.
X2 )

A similar modification of Eq(2.29 gives

101
FIMF:gf Vo(x) (2.3
Xo
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r 1J1V (x) g d (2.32 ;8
=— X)| ——|dx. . -
276 Juy O X2+ x3 3
&Vl

Obviously, both the integrals are equal ¥y sharply peaked
aroundx=X,, but generally, for nonstatic quarks,

Liab<T'ivF - (2.33
What can our resulf2.33 mean quantitatively for the

more realistic scenario? In our discussion[#l we sug-

gested that the real structure functions could be rather so

m

FIG. 1. RatioRg plotted for valuesxy=0.2, 0.02, 0.0002, i
oerder from top to bottom.

superposition of our idealized ones based on the single val-

ues of the effective masgy=m/M. This means that all the
relations involving the function¥;(x)=V;(x,x,) should be

integrated over some distribution of the effective masses

n(Xg). But first, let us try to gues¥, at least in the vicinity
of xg, which is important for the integral®.31) and(2.32.
According to Eq.(P3.20 for x>X, one can write

X5
X+—].
X

M M
XV5(x)= = 5 P(Po),  Po= (2.3

Now, for pg close tom let us parametrize the energy distri-
bution by

_aexpla) Po
P(po) = m eXF( - am) , (2.395
which fulfills the normalization

| “Piporae-1. (2.36

Obviously, the distribution(2.35 means that the average
quark kinetic energy equals/«. Inserting Eq.(2.35 into

Eq. (2.39 gives
exp(

(1+y)d~expay),

Xo
_+_
2[Xg X

aexpla)

Volx) =~ 2XoX

). (2.37

Let us note that, foty|<1,

therefore if we substitute the exponential function in Eg.

(2.37 by
exp( ~[(1—x)(
=f(Xx,Xp),

the resultingVy(x) will coincide with Eq.(2.37) in the vi-
cinity of xo, but moreover will obey the global kinematical
constraint outlined in Fig(P2). The ratio of integral$2.32
and(2.31) calculated by parts with the use of E¢2.37) and
(2.38 gives

2

x3 al2Xg
X

1— —
1,

a

2

X Xg
_+ p—
Xg X

Xa<

=

<

=

X

(2.39

Clap
Rs<a.xo>zrth

1
4
X0

Xo/x(arctaix/xq] — m/4) f(X,Xq)dX

1
f (1—x3/x2)f(x,X0)dx
X0

(2.39

the results of the numerical computing are plotted in Fig. 1.
What do these curves mean? There are the two limiting
cases.

(@) The quarks are massive and static, i@, then
R,— 1. It is the scenario in which both the approaches are
equivalent.

(b) Both the quark effective mass and —0, but the
quark energyE,;,)=m/a>0, thenRs— 0. This is due to the
fact that the massless fermions having a spin orientation al-
ways parallel to their momentum cannot contribute to the
spin structure function of the system with the spherical phase
space.

Obviously, the real case could be somewhere between
both the extremes, i.eq; andm should be the finite, positive
guantities. The combination of Eq.39 and(2.23 gives

1
1—‘Iab:gRs(avxo)- (2.40

The comparison with the experimental vallig;=0.13 im-
plies R¢=0.78, which according to Fig. 1 correspondsato
=2. Let us note that this result dependsxgrather slightly,
therefore, irrespective of the unknown distribution of effec-
tive massesu(xg) we can conclude the following. If we
accept that the quarks have on averdgeer effective
masses distributiora mean kinetic energy roughly equal to
one half of the corresponding effective mass, then within our
approach, the experimental vallig,, is compatible with the
assumption that the whole proton spin is carried by the va-
lence quarks.

IIl. SUMMARY AND CONCLUSION

We have calculated the first momdnt of the proton spin
structure function in an approach which takes consistently
into account the internal motion of the quarks described by a
spherical phase space. Simultaneously, we have done a com-



3.1 P.Zavada: Pruhled do nitra protonu v obraze strukturnich funkci 53

5838 PETR ZAVADA 56

parison with the corresponding quantity deduced from themass. The application of the constraints due to axial vector
standard IMF approach and came to the conclusion that theurrent operators on the spin contribution from different fla-
latter gives a greater valde, . This difference is due to the vors can somewhat change the parameteio achieve an
fact that the standard approach is based on the approximatigreement with the data. This question is being studied and
(P3.36, which effectively suppresses the internal motion ofwill be discussed in a separate paper.

quarks. On the other hand, in our approach, the total quark The corrections o', suggested in this paper together
energy is shared between the effective mass and the kinetigith the corrections on the distribution functiori®3.59
energy, and correspondingly, the resulting formula correctlyshould be taken into account for the interpretation of experi-
reflects the mass dependence of the structure funclign: mental data. At the same time it is obvious that the distribu-

continuously vanishes for massless quarks controllgd l_)y flon of effective masseg () is a quantity requiring further
spherical phase space. Let us note that the quark intrinsigy,qy.

motion has been shown to redutg also in some other
approache$l1-15.
Finally, we came to the conclusi_on _that_ doy calcu_lated _ ACKNOWLEDGMENTS
only from the valence quarks contribution is compatible with
the experimental data — provided that their kinetic energies This work was supported by Grant Agency of the Czech
are on average roughly equal to one half of their effectiveRepublic, Grant No. 202/95/0217.
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The spin structure functions of the system of quasifree fermions on mass shell are studied in a consistently
covariant approach. A comparison with the basic formulas following from the quark-parton model reveals the
importance of the fermion motion inside the target for the correct evaluation of the spin structure functions. In
particular it is shown that, regarding the mom&nt both the approaches are equivalent for the static fermions
but differ by a factor 1/3 in the limit of massles fermionma<€p, in the target rest frameSome other sum
rules are discussed as well.

DOI: 10.1103/PhysRevD.65.054040 PACS nun®erl13.60-r, 13.88:+e, 14.65-q

I. INTRODUCTION the intrinsic motion for the spin structure functions, using a
very simple model of the system quasifree fermions on mass
Measuring the nucleon spin structure functions representshell. The basic requirement is consistently covariant formu-
an important tool not only for better understanding of thelation of the task for the system of fermions, which are not
nucleon internal structure in the language of the QCD, bustatic, being characterized by some momenta distribution in
also for better understanding of QCD itself. These functionghe frame of their center of mass. The spin structure func-
contain information which is a crucial complement to thetions of such system are obtained in Sec. Il and the sum rules
structure functions obtained in the unpolarized deep inelastitollowing from these functions are shown in Sec. Ill. In Sec.
scattering(DIS) experiments. IV a comparison with the formulas of the standard QPM is
The polarized experiments are more complex and difficuldone. The last section is devoted to a short summary.
than the unpolarized ones; nevertheless the past decade has
brought remarkable results also for the nucleon spin funcH, SPIN STRUCTURE FUNCTIONS IN COVARIANT
tions from the experiments at CEREuropean Muon Col- APPROACH
laboration (EMC), Spin Muon Collaboration'SMC)] and . . ) )
SLAC (E142,E143,E154,E155And the new experiments Let Us imagine a system of three qua_3|free chargeq fermi-
are running(HERMES or are under preparatiofCOM- ons \(v_|th the spin _l/_2 and mass for which the following
PASS. The data on polarizegp collisions are expected Cconditions are satisfied. , )
from the BNL Relativistic Heavy lon CollidefRHIC). For (1) The dlstrlbutlon_ of ferm_lon momenta in the _frame of
the present status of the research in structure functions s¢@€ir center of mass is described by some spherically sym-
e.g.[1], the overview[2] and citation therein. The more for- Metric functionG:
mal aspects of the polarized DIS are explainediah
Also the interpretation and understanding of polarized J' G(po)d3p=3; po=VmZ+pZ (1
structure functions seem to be more difficult. For example,
until now it has not been well understood why the integral of
the proton spin structure functian is substantially less than
expected from the very natural assumption that the nucleon
spin is generated by the valence quarks. Presently, there is a
tendency to explain the missing part of the nucleon spin as a
contribution of the gluons. It has been also suggested that the
quark orbital momentum can play some role as &# 6].
The spin in general is a very delicate quantity, which re- f P ) A ()3 =1, v
quires correspondingly precise treatment. It has been argued, .
that for correct evaluation the quark contr_lbutlon to theWhereQ is the normalization volume and
nucleon spin it is necessary to take properly into account the
intrinsic quark motiorf4—13]. The necessity of the covariant b,

The free fermion states are described by the spinors

Yo (X)= J%U(p,x)exp(—ipxx

formulation of the quark-parton modéQPM) for the spin 1 2P, N
functions has been pointed out [it4]. These requirements ~ U(P,A\)= N po 8 ;o N= Dt m’ =1
are not satisfied in the standard formulation of the QPM, Potm’ N
which is currently used for analysis and interpretation of the 3)
experimental data.
In this paper we shall attempt to demonstrate the role ofVe assume
! =N¢,; A== L 4
*Email address: zavada@fzu.cz 2 NTPHL=Aéy T2 @)
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which means that the spin projection of the fermion in its restyith n generate an orthonormal base in the frame of center of

frame is*+1/2 in the given directiom;|n|=1. mass of the three fermions, then a similar calculation gives
(2) By G-y we denote function, which measures the
probability that the fermion is in the statg, -1/,, so that (n'j)=(n"j)=0. (13
G(Po) =G+ 1/2(Po) + G- 1/2(Po) ) Obviously, the simplest way is to use the base like

and we assume n=(00), n'=(0,10, n'=(100. (14

f AG(po)d®p=1; AG(Po)=G yAPo)~G-12Po). Since we work with the probabilistic descripti¢in terms of
(6) guantum mechanics with the statistical mixture of stabgs
means of the distributions, , as a result we can obtain only
The differenceAG consists of the corresponding contribu- the mean values of the total spin projectigd$=(0,0,1/2).
tions Ah; from the three fermions: Nevertheless one could consider a more rigorgug more
complicatedl approach, in which the three fermion system is
not constructed as the statistical mixture of plane waves, but
AG(IOo)=k§::1 Ahy(po); as the composition of the three pure stajesl/2,j,=
+1/2 with the condition, that the whole system represents a
Ahy(po)=hy . 172 Po) — i — 172 Po).- (7)  bure stateJ=1/2,J,=1/2. These states are represented by
the relativistic spheric wavespinorg, which imply the cor-
Later on, we shall need also the distribution responding probabilistic distribution&, G, , AG and H
have spheric symmetry. In other words, if in our approach we
assume the system in a pure statel/2, then its probabilis-

3

3

"'(I%)Eg;1 exAhy(po), (8 tic description in terms of the plane waves will be defined by
the distributionsG, , which are spherically symmetric. In
wheree, are the fermion charges. fact, that is the reason why we require spheric symmetry;

What is the resulting spiftotal angular momentupre- ~ deformed distributionss, would contradict the eigenstate

lated to the whole system? Let us calculate the integral of thé=1/2. _ _ o _
matrix elements Let us point out, in the relativistic case, having one fer-

mion state with definite projectionj of the total angular
L T . 33 momentum, one cannot separate its orbital and spin part
<nj>_J L); G (Po) (Up \(INj P (x))d™XA"P, (9)  (with exception of the special case whefi=p), i.e., ac-
count with the fermion orbital momentum is crucial for a
where the angular momentujrconsists of the spin and or- consistent calculation of the resulting spin. On the other
bital part hand, a similar calculation, in which the orbital paris
ignored, gives

o 1lfo 0) d
h=2cth=5] o | TleamPig e (20 U A (ONZ g A (X)
Since the total angular momentyns a conserving quantity, :i NGy + TDU'nU'PU¢
which commutes with the ternpo, a simple calculation QN M TN o (perm)2
gives
1 po-(—po-no+2pn)
+ . 1 ~aN Nt > x)
Yo (N] P\ (X) = 6()\+gklmnkplxm)- (17) 2(potm)
2
So, after inserting to Eq9) and using the assumptioi6) = i()\_)\ P +o! po-pn %)-
one gets QN (po+m)? (Po+m)?
L1 Since
<nl>:§j f [(G+12(Po) =G -12(P0))/2
@ 3
+G(Po) ekimNkP Xm]dxdp po~pn=i§1 piza'ini"'; Pip;ain; (15
1 1
= Ef AG(py)d3p= > (120 one can write

since the termey NP Xy, due to spheric symmetry, van- n3 :J f G t ()3 ) d3xd3
ishes. One can check, if',n" are vectors, which together {n%) 92;' A(pO)(%‘”( INZp( ) P

054040-2
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wherem andw(\) denote the fermion mass and polarization

A
=f > Gh(po)ﬁ 1—p—2 vector. If one assumes that the electron scattering can be
A (Po+m) described as the incoherent sum of the interactions with the
op? single plane waves, then the tendot*™ reads
+—————|d,
3(potm)

d®p
TUh = aprod'm f H(Po)w”o((p+ )~ m?)—=.
where inserting the formulél5), we take into account that (24
due to spheric symmetry the ternpsp; (j#i) vanish and
the termsp? can be substituted by?/3. The last relation can
be further simplified:

Here the charge factors and the two possible signs“oére
included in the tensor through the distributi¢d). By the
symbolw? we mearw? (A= +1/2). Let us remark that this

1 1 2m 1 form of the antisymmetric part of the hadronic tensor is very
<n2>:§f AG(pO)(§+ 3—|Oo)dsps 5 (16)  similar to that used if14]. Further, we can modify the

S-function term:
One can observe that the correspondence with E2).takes 2 N3 2\ 43
place only for the system daftatic fermions. (p+q)"~mAd"p=4(2pa+q7)d’p
For further consideration, it will be useful to substitute the 1 (pg ¢
vectorn, representing the direction of the fermion polariza- = 2—55 ?JF 2¢
tion, by the corresponding covariant polarization vector
w(\), which satisfies where ¢ is an arbitrary constant, which only rescales the
5 integration variable. Now, let us imagine that our target is a
wi(A)=-1, w(A\)-p=0 (17 part of the greater system, which is at rest with respect to the
given reference frame and has the missbut at the same
time the probing electron interacts only with the three fermi-
ons. If we put

d®p, (25

and

A 1
W()\)=m(0yn): A=23 (18) §=Mqo=Mv, 26

in the fermion rest frame. The explicit representation of thethen in thes function one can identify the terms known from

vectorsw(\) will be defined hereafter. the formalism of deep inelastic scattering:
Now, let us expose this system agfixed) target to the

beam of polarized electrong.g.,helicity= +1/2) coming 9 _ Q? _

with the momentum T 2My 2My %

(27)

k=(k0,\/k02—mez,0,0) (199  which is the Bjorken scaling variable; its value can be di-
rectly determined using only initial and final momenta of the
and let us calculate the form of corresponding differentialscattered electron. This variable is in théunction compen-
cross section. The spin dependent part of the cross secti@ated by the ratigpg/M v, which after boosting the whole
for interaction with a single fermion in one photon approxi- target of massM to the infinite momentum frame approxi-
mation has the form mately represents ratio of dominating momenta components
p’/P’ of the fermion and the target.

The explicit form of the polarization vectow can be
found as follows. First, let us transform the vectar
The antisymmetric tensdr*”* (see e.g[3]) related to the = (o) from the fermion rest frame to the target rest frame.
electron beam reads After decomposition of the vecton to longitudinal and
transversal parts with respect to the momentum ferngion
the corresponding Lorentz boost gives

do~—L¥®(q,9)TY). (20)

LaB(A): Mee aﬁ)\os)\qg! (21)

where m, is the electron masss denotes its polarization n pn

(P
vector (On)—w= m ,n+ m(erIOO)p .

(28)
5= i( /kg, m2ko,0,0); s?=-1, ks=0 (22 Second, let us make a Lorentz boost of the whole target with
Me massM to some another frame, which is defined by the new

. . ~ components of the target momentum
andg=k—k’ is the photon momentum. The antisymmetric

tensorT*?®™ related to the single fermion inside the target
has a similar form:

(M,0,0,0—P=(Py,P); P?=M2, (29

Next, if we define the covariant vect&by its components
TP =me 4, ,4"WI (M), (23)  in the target rest frame as
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S=(0,n), (30 Because of the antisymmetry of the tensaand after insert-
ing from the relation(31) it follows that
then the polarization vectow can be written in manifestly

i m P
covariant form S7Ge— P7Gp= quj H (pﬁ) (AP +BS+Cp?)
Ww’=AP’+BS +Cp’, (31) ,
pq d°p -
whereA,B,C are invariant functiongscalar$ of the vectors X8 Pq X Po +Da”, (39

P,S,p. These three functions are fixed by two, the conditions
(17) and by the constrain®8), valid in the target rest frame. whereD is some scalar function and the functiohd8,C are

A simple calculation gives given by the relation$32). After contracting withP,, S,
S " and q, one gets the equations for unknown functions
__ b _ _M Gs, Gp andD:
A= PPEmM’ B=1, C—mA. (32

m P
-~M?%Gp= fH(p—)(AM2+c-pP)

So, we have obtained the explicit covariant form of the po- 2Pq

M
larization vectorw entering the tensof24), which can now e
x)—p+D-Pq, (40
Po

in accordance with the relatiorig5)—(27) be rewritten %8 Pg
Pq
m pP pg | d
(A) — N = lwesl — — x| ——
Tas=aprod 2PqJH(M)W 5(Pq X) Po ' g JH PPl Bicps
s~ 2Pq M P
where we use the invariant terfiq instead ofMv and pPq dp
H(pP/M) instead ofH(py). X0 Bgq™X) o, TR9S (41)
On the other hand, in accordance with the general rule
(see e.g[3]), the antisymmetric tenscTrgAB) appearing in the m pP
formula for the cross sectiof20) has the form qS Gs—Pg-Gp= ﬂj H(ﬁ)(A' Pg+B-gS
G2 d®
T = aprad’ MS”Gl+[<Pq>S"—(qs>P"]W], +C-pq)5(2—3—x)p—:+Dq2

39 42

where M,P,S represent the target mass, momentum, and . . ) )
spin polarization vector, which satisfies and insertingGp ,Gg from the first two equations to the last

one gives the condition fab:
§*=-1, PS=0. 35
0 lfH(p—P)(O u)5(ﬂx>ds—p+D- u=0
The invariantsG, andG, are the spin structure functions. In 2Pq M P Pq Po qu==u
the next we shall identify the parametéfis P,S in Eq. (34) (43
with those in the model described above and simultaneously
we shall attempt to determine the spin structure functiondvhere we denote
corresponding to our target. First of all, we modify E§4)

i (Pa)
by the substitution u=q+(qSS— VE P.
Pq qS
Gs=MGy+ Gy, Gp=17Gy, (36)  Finally, insertingD from this equation to Eq$40),(41) gives
with the use of relation§32) the structure functions
which gives . m (pP oS L 1 ( o puP )
TA =& 51,0 {S"Gs— P7Gp}. (37) P=2pq) "\ M /pP+rmM| T mMm|PT T qu @
Comparison with Eq(33) gives the equation for the struc- « 5(@_ )d?'_p (44)
ture functions: Pq Po’
&aprod{S’Gs— P Gp} G M fH(pP) 1 pS M
== Ll =
\m fH(pP) ag(pq )d3p 2Pa) AMJLT pPmMm
= E€apNo DA~ ~ |W 5y X
Saprod 2pg) MM Pq "/ po pu pq | d
X|pS——qS| || 5= —X| —. (45)
(38 qu Pq Po
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The spin structure functions in the standard notatggn and using relatiori48) one gets
=M-Pq-Gy, g,=(Pq)?M-G, can now be obtained from

. 1 p2 d3p
Egs. (36): N . rlzf g1 (x)dx= Ef H(po)(m+ W) E.(sl)
91:PQ(qu—SGP): 92=¥Gp, _ - _
Simple modification then gives
9:+92=PqGs, (46) 1 1 2m
where the function&g,Gp are given by relation§44),(45). Fl:i.f H(Po) §+ 3_I30) d*p. 62

Corresponding integrals, as shown in the Appendix, can b . . . . .
simplified to the form(A14),(A15). Let us remark that re- E/Ie%rt(iaogetalled analysis of this result will be done in the next
sulting functionsgq,g,, after inserting from the relations ) .

. . The relationgA7) and(A8) can be used also for the cal-
(A14),(A15) into Eq.(46), do not depend on the variakdS . . . i
despite the fact that such terms are present in the startin lation of the higher momenta. GenerallyFiis a function

integrals(44),(45) in a nontrivial way. This is a consequence efined as

of spheric symmetry of the distributidf, which as we have Po+P1

suggested, follows from the requiremeht 1/2. F(x):f K(p)ﬁ( M —x)d3p,
lll. SUM RULES then

For the next analysis of the obtained structure functions it Do+ P
is convenient to express the integrédigl),(45) in the target J an(x)dxzf f K(p)x“ﬁ(ﬁ—x)dg'pdx
rest frame, wher®=(M,0,0,0) andS=(0,n). Detailed cal- M
culation is done in the Appendix. Now, let us assu@@

>4M %, Potp1|"
>4AM?x?; then :J'fK(p)( OM 1)
|l
q
N TV R ToL N | +
14 Q - Xé(%—x)d%dx

and using the second relatigd6) and Eq.(A7) one gets

+ n
i - P
szf gz(X)dXZ—Wf f H(po) pﬁm
Application of this rule to EqS(A7) and(A8) gives after the
PotP1 prdp.dpr substitution(50) and with the use of the second and third
X 8 —X dx : .
M Po relation (46):
22 1 m?
p1—P7/2| prdp;dpy f xg,d =——f H ——1d3
=— x| H + ) g2dx (Po){ Po d*p, (53
wf (po)<p1 Dot m Do 6M Po
(47) 1
_ 3
In the last integral, due to spheric symmetry of the distribu- J X(g1t02)dx= GMJ H(po)(Po+2m)d>p. (54
tion H, the terms proportional tp,; and p2—p2/2 vanish,
insofar as These equalities imply relation
r,=0, (48) ’

1 m
f X(g1+29,)dx= WJ H(po)(2m+ p—)d3p,
which is the known Burkhardt-Cottingham sum ryl5]. ° (55)
Similarly the third relation(46) and Eq.(A8) give
which in the limit of the massless fermions coincides with

f . dxe f H N 2 the Efremov-Leader-Teryad¥LT) sum rule[16]:
(gl(x) gZ(X)) X= (pO) m 2( p0+ m)
dp-d f X(g1+29g,)dx=0. (56)
Xw. (49)
Po
IV. DISCUSSION
After the substitution
In the previous sections we have studied the properties of
2mwp1dp,dpr=d3p (500  the spin structure functions related to the system of quasifree
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fermions on mass shell. This system can be compared witfihe charge weighted distributioi®), in an SU(6) picture,
the naive QPM, which is with embedded QCD correctionsreads
yet is the basic tool for the analysis and interpretation of 512 21
polarized and unpolarized deep inelastic scattering data. _ 2 _
What is the difference between our approach and the nai\f‘é“p‘))_2 eiAhj(pO)_((§) §h”(p°)_(§) §hd(p°))'
QPM, if one speaks about the proton spin structure func- (63)
tions? To simplify this discussion, let us assume: o

(1) Spin contribution from the sea of quark-antiquark Now, for simplicity let us assume the same shape of the
pairs and gluons can be neglected. Then the three fermions fistributions for both flavors:
our approach correspond to the three proton valence quarks. 1
So, in this simplified scenario, the proton spin is generated ~hu(po) =ha(Po)=h(po). (64)
only by the valence quarks. 2

(2) In an accordance with the nonrelativis&lJ(6) ap-

proach the spin contribution of individual valence terms isThen it follows

given as 5
G(po)=3h(po), AG(po)=h(po), H(p0)=§h(p0)
s,=4/3, sq=-—1/3. (57 65
Let us point out, in the given context the term valence quark : P
means nothing else than the three fermions with defined mc?g}nd the relation$16) and (52) can be rewritten:
menta distribution, charge, mass and polarization. 1 1 2m
Then according to the naiv@U(6) version of the QPM (nX)= ff h(po)| 3+ 3—)d3p, (66)
we have Po
5 1 2m
1 1/(2)\%2 Fz—fh (—+—)d3. 6
91(X)=§2 ejquj(X):§<(§) §Uua|(X) 1= 1g) N(Po){ 3 3po P 67)

These relations imply the following.
, (59 (a) Because the distributioh has the defined normaliza-
tion, the corresponding integrals reach their maximum in the
limit, when the fermions are statigpg=m). On the other
hand in the limit of massless fermionsm{p,) these inte-
grals represent only one third of their maximal value. In

1\%21
—(5) §dva|(X)

corresponding to the two quarks with distribution, (x)
and the one with distributiod,,,(x), which are normalized

as particular, thel’; satisfies
Ef u (x)dx=f d,(x)dx=1 (59 > S
2 val val . 1_821—‘12 a (68)
It follows that (b) Both the integrals aréup to the factor 5/9) equal. It

follows that in the case of nonstatic fermions the “mea-
sures” only the contribution from their spins, which is only
part of their angular momenta; see the derivation of the re-
lation (16). Fermions with momentunp+ 0, which is not
This number overestimates more than twice the experiment&larallel to =n, necessarily contribute to the total angular
value. Disagreement is generally interpreted as a contradi¢dhomentum also by some orbital part.
tion with the assumption that the proton spin is generated Further let us notice, if we denote
only by spins of the valence quarks.

Now let us Qalcglate thE, in our approach. _Let us denote YeLT= f (g1 +29,)dx, (69)
momenta distributions of the valence quarks in the target rest
frame by symbol$, andhy with the normalization

5
rl:f g1(x)dx= 75=0.28. (60)

then Eq.(55) and the third relatiori65) imply

1

- 3h— 3n— 2 18

ZJ hu(po)d°p Jhd(po)d p=1. (61) 3M=T yerM=m. (70)
These distributions are connected with thg, (x) and Why do these two very simple approaches for description
d,a(x) defined above by the relation of the target consisting of the three fermions differ so

q strongly regarding the predictioli;? The reason is the fol-
_ Por+pildl 3 lowing. The standard formulation of the QPM is closely con-
Goal(X) = f Ny(Po) 5( My X) dp. (62 nected with the preferred reference system—infinite momen-
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tum frame (IMF). The basic relations between the
distribution and structure functions such as

1
0:00=75 2 efAg;(x), Fa(x)=x2 efgi(x) (7

are derived with the use of approximation

p,=xP (72

a

which seems to be plausible in the IMF. Nevertheless, in th
covariant formulation this relation is equivalent to the as-

PHYSICAL REVIEW B5 054040

V. SUMMARY AND CONCLUSION

In the present paper we have studied the spin structure
functions of the system of quasifree fermions on mass shell
and with spherically symmetric distribution of their mo-
menta. The main results can be summarized as follows.

(1) Using a consistently covariant description of this
simple system, we have shown how the structure functions
depend on the intrinsic motion of the fermions. In particular,
we have suggested that the momdntecorresponding to the
two extreme scenarios, of the statimassive fermions and
massless fermions, can differ significantlyl ;(m

&<po) /T 1(po~m) =1/3.

(2) We have shown what sum rules follow from the ob-

sumption that the quarks are static with respect to the protoaine spin structure functions. Further we have shown how

since the velocitiep;/p, and P; /P, are the same. In the
proton rest frame it meanp=0. That is why both ap-

these rules are related to some sum rules well known from
the QPM phenomenology.

proaches are equivalent for the static quarks but differ for the (3) We have done a comparison with the corresponding

quarks, which have some intrinsic motion inside the proton

relations for the structure functions following from the stan-

In our approach we do not use assumpti@) and as & 4arg formulation of the naive QPM. Both approaches are
result if p,#xP, we obtain different relations between the pqjcally equivalent for the static quarks. Differences for
distribution and structure functions. In other words, the faclyarks with intrinsic motion inside the proton are a result of
that the experimental valu€', is substantially under the iha conflict with the assumptiop, =xP, , which is crucial

value predicted by the naive QPM in standard formulation¢qr gerivation of the relations between structure and distribu-
can be in our approach interpreted as a direct consequence ¢, functions in the standard QPM.
the quark intrinsic motion. (4) The difference between the experimental valyefor

Of course, the approach discussed above concemns thgs nroton and the corresponding value expected from the

simplified scenario of the quasifree fermions on mass shell,5iye OPM, or at least a part of this difference, can be inter-
Naive QPM represents only a first approximation for a de-eteq as a consequence of the quark motion inside the pro-
scription of real nucleon, but the consistent accounting fog,

the quark intrinsic motion as suggested in our approach can,
in some aspects, improve this approximation considerably.
Nevertheless, in the realistic case of partons inside the
nucleon the situation is still much more delicate. The inter- | would like to thank Anatoli Efremov and Oleg Teryaev
action among the quarks is very strong and the partons thenfier many useful discussions and valuable comments.
selves are mostly in some short-lived virtual states. Is it pos-
sible to speak about their mass at all? Strictly speaking,
probably not. The mass in the exact sense is well defined
only for free particles, whereas the partons are never free. . ) )
However, one can assume the following. The relations ob- 'Ntégrals in the relation&44),(45) expressed in the target
tained in the previous sections can be used as a good afSt frame read
proximation even for the interacting quarks, but provided
that the termmass of quasifree partois substituted by the _ f H(po)
term parton effective mas®8y this term we mean the mass, 2M2?p
which a free parton would have to have to interact with the
probing photon equally as the real, bounded one. Intuitively, 1+ i(
m| Po

Pq ) d°p

x| —,

M 14 po

m
Cs=5u» f H(po)

_ Pa—(pn[g|cosw
g’sif o
d

ACKNOWLEDGMENTS

APPENDIX: CALCULATION OF THE INTEGRALS
RELATED TO Gp,Gg

pn

Gp= Pot+m

~ Pg—(pn)|glcosw

X
g?sirf w

d

of gluons and quark-antiquark pairs as one particle, by which
this photon is absorbed. And on the contrary, the higbér
should mediate interaction with more isolated” quark.
Moreover, one should accept that the value of the effective
mass can even fluctuate for a fix€d. Such a phenomeno-
logical model was suggested 3], but unfortunately cal-
culation was based on the form of quark polarization vector
which is not correct. Despite that, the general considerations
in the mentioned paper can be sensible. Corresponding nu-
merical recalculation with the correct input obtained in the
present study for the invariant&,B,C,D [relations (32),
(43)] should be done in a separate paper.

X & (A1)

1+

Po+m m

|q|c03w>

X

Y

this mass should correlate @?: a lowerQ? roughly means

that the photon "sees” the quark surrounded by some cloud
d3p
Po ’

Pq

My (A2)

054040-7



3.1 P.Zavada: Pruhled do nitra protonu v obraze strukturnich funkci

61

PETR ZAVADA

PHYSICAL REVIEW D 65 054040

where cosv=qn/|q|. For integration we use the orthonormal This is the first root of the corresponding quadratic equation;

system in which

q
P=p1€1+ P26+ P3ts; elzfm,
n—(ne)e
= =g, X6, A3
ey o -

SO one gets

n
pg=—pilal, pn=-—p;cosw+p,sinw, cosw= %

(A4)

After the substitutionp,=py cose, ps=prsine and taking
into account that the terms proportional to godisappear,
the integrals can be rewritten

cosw
Gp —f H(po)

= +
2M2p P1

» s
|q] potm

(pov+ p1lql )ppolded(P
X5 —X ]
MV po

(A5)

pfcog o
m(py+m)

Gg= m JH 1

S (po)| 1+

Pov+ pa/ql
—X

prdp,dprde
My ’

Po

X O

(A6)

wherepy= ym?+ pT2+ pzl. Integration overp gives

G _WCOSwf H(py)
P M2y Po

v pi—pf2
la| po+m

p1t

- dp,d
Xﬁ(PoV pllql_x)pT Pudpr A7)

Mv po

p7/2

m
Gs= mf H(po)( 1+ (Pt m)

(poV+ p1lql )ppolde
) —X .
My Po

(A8)

Further, using the relation

M _ e

(A9)

one can check that the argument of thefunction equals
zero for

Mx—m2/Mx
V1+4mZ/Q2+ \1+4M23x2Q?’

_= 2_ . 2, 2
pP1=p1 my=m-+p7.

(A10)

the second one is excluded, since in the effect ofdtienc-
tion this root is compatible only with negative enerpy.
The energy corresponding to the rdétl0) is

Po=Po=Mx— pllq| =Mx—p;/1+4M3x%/ Q2.

(A1)
Then in accordance with the rule
S(X—X;
S(f(x))dx=2, (, J)dx, f(x)=0 (A12)
To|f (Xj)|
the 6 function in the integrals can be rewritten
Pov+ P1ld| M &(p;—p1)dp;
S vy X dpi==—=
v p1/Po+ V1+4AMX/Q
(A13)
and afterwards the integrals are simplified
=2 2
TCOS® (PTmax ~ [~ v p1—p1/2
Gp= f H =
P My (po) P1 |q| p0+m)
d
X Prdpr , (AL4)
P1+PoV1l+4M2x2/Q?
7TM ((PTmax  ~ p%/z
Gs=— | H(o)| 1+ ———
v Jo m(po+m)
d
o PP , (A15)
P1+Povl+4MAX/Q?

wherep, andp, depend o according to Eqs(A10) and
(A11). For the numeric calculation one should know the up-

per limit Pt max fOr givenx, Q2, andpy max- After inserting

P, from Eq. (A10) into Eq. (A1l) one gets the equation for
2
mi:

Po max— Mx Mx—m2/Mx

V1+4M2x?Q2 T V1+4m2/Q%+ 1+4M232IQ%
(A16)

Instead ofm% it is useful to solve this equation first for

= /1+4m?/Q? obtaining the two roots

_Ai \/A2+ 43(50 max T a) . BO max Mx
V== 2a CJ1+4M%x2Q?’
_ @
&= amx (ALD
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Sincey_ <0, this root is excluded. The second rgat after DT max= /mT2 mav— M2 (A18)
some computation implies

~ Mx)2 In this way we have the recipe for how to calculate the inte-
m2. =Mx(2p —Mx)+ (Po max— Mx) grals related to the structure functioBs ,Gg corresponding
T max Po max 2 2.0 .. . 3
0 .
1+Q/AM“x to the distributionH (pg)d~p
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The spin structure of a system of quasifree fermions having a total angular moméstlif is studied in
a consistently covariant approach. Within this model the relations between the spin functions are obtained.
Their particular cases are the sum rules of Wanzura and Wilczek, Efremov, Leader, and Teryaev, and Burkhardt
and Cottingham and also the expression for the Wanzura-Wilczek twist 20t¥fn With the use of the proton
valence quark distributions as input, the corresponding spin functions are obtained. The resulting structure
functionsg, andg, are quite compatible with the experimental data.

DOI: 10.1103/PhysRevD.67.014019 PACS nun®erl13.60-r, 13.88:+e, 14.65-q

I. INTRODUCTION spin structure and make a comparison with the experimental
data forgq(x) and g,(x). The last section is devoted to a
The nucleon structure functions, both unpolarized and poshort summary and conclusions.
larized, are the basic tools for understanding the nucleon
internal structure in the language of QCD. Precision mea- Il. SPIN STRUCTURE FUNCTIONS AND SPIN
surements of the polarized structure functions have been DISTRIBUTIONS

completed only in recent yeaf4—8|. These functions con- ) .
tain information which is a crucial complement to the struc- N @ previous papeli22] we showed that the spin structure

ture functions obtained in unpolarized deep inelastic scattefUnctions related to a spherically symmetric target consisting
ing (DIS) experiments. At the same time the interpretationOf three quasifree fermionf spin 1/2), havmg resulting
and understanding of polarized structure functions seem tital angular momenturd=1/2, can be written as

be much more difficult than in the case of unpolarized ones.

Actually, it is not yet clear how the nucleon spin is generated ZEJ H(po)| m+ —py+ V_2 pf
from the spins and orbital momenta of the quarks and gluons. 9173 Po lql P1 g2 Potm
For the present status and perspectives of nucleon spin phys-
ics se€g[9] and citations therein. The more formal aspects of 2\ pi2 Pov+palg| d®p
polarized DIS are explained {i0] and[11]. T Tm ( M _X) —. @
Spin i | is a very delicate quantity, which requires lal*/ Po g Po
pin in general y q Y, q
correspondingly precise treatment. It has been argued that for 1 2_ 20
correct evaluation of the quark contribution to the nucleon == lf H(po)| p1+ v ﬁ
spin it is necessary to take properly into account the intrinsic 2 |d| lal po+m
quark motion[12—22. The necessity of a covariant formu- n e
lation of the quark-parton modéQPM) for the spin func- % 5<p°V—p1|Q|_X _p, )
tions has been pointed out [23]. These requirements are Mv Po

not satisfied in the standard formulation of the QPM, which 5 o o )
is currently used for analysis and interpretation of the experiVhere po=ym“+p®, pr=p;+p3, and H is the charge

mental data. weighted distribution
In Ref.[22] we demonstrated the role of the intrinsic mo- 3
tion for the spin structure functions, using a simple model of _ 2
a system of quasifree fermions on mass shell. The basic re- H(Po) kzl €ACG(Po)- ©

quirement was a consistently covariant formulation of the
task for the system of fermions, which are not static, beinglhis distribution is constructed from the polarized distribu-
characterized by some momentum distribution in the framdions of individual fermions

of their center of mass. In the present paper we attempt to

further develop this approach. In Sec. Il we introduce the AGy(po) =Gy, + 1A Po) — Gy, - 1/ Po) 4
spin structure functiong;(x),g,(x), the longitudinal and
transversal net spin density distributiogs(x),s(x), and
the density of total angular momenturfx). Then in Sec. Il
we show how all of these functions are mutually related. G(po)d®p=1, Gi(Po) =Gy + 1A Po) + Gy — 172 Po)
Finally in Sec. IV we apply the suggested approach, with ©)
some simplified assumptions, to the description of the proton

which satisfy

3

AG(pg)d3p=1, AG(py)=2, AG . (6
*Email address: zavada@fzu.cz J (Po)d"p (Po) kz'l «(Po) ©

0556-2821/2003/61)/01401914)/$20.00 67 014019-1 ©2003 The American Physical Society
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The distributions5y , (po) measure the probability of finding 3
a fermion in the state p(r-pn=i:21 pfamﬁjz#i Pipjoin;
1 $rn 1 =p30,+P1p2oy+Papaos (13
U(p,hn):_ po ’ Eng(ﬁ)\n:)\‘ﬁ)\nv . . .
\/N Po+ m¢"” and the relation{10) can be simplified to
! Si(p) = 2 26(pg) ms 72 14
)\:ii’ (7) P "~ 2po Po potm)/’

(3) In a similar way, one can also obtain the polarizations
Sl (p) and Sk(p), which are related to the density of longi-
tudinal polarization in a transversely polarized target, and
Po vice versa. The densit§] (p) can be obtained from the re-
Pl =1. (8 lation (10) after insertingi=(0,1,0),n’ =(1,0,0), andSx(p)
with n=(1,0,0)n’=(0,1,0), correspondingly. After some
alculation similar to that for obtaining the relatiofi®) and
14), one gets

where the directiom coincides with the direction of target
polarizationJ and a standard normalization is used:

Now, let us try using the same system to calculate som
spin distribution functions. In the first step we shall define
these distributions in terms of the fermion momenta related 1
to the target rest frame; then we shall show their representa- T =S(p)= —
tion in the variablex. Su(P)=Sr(p) 2p AG(Po)

The net spin density corresponding to the projection on
the directionn’ is defined as

P1P2
potm’

(19

(4) The density of total angular momentum can be defined

as
1 — T 2
P ; Cr (PO (AN A, J(p,n,n’):§ Gi(Po)u'(p,AN)(N'))u(p,An),
1/ O
== . 9 _ 1{ox 0} J
> 2(0 U) ® Jk:2k+|k:§(0k k)|8k|mp|a-

One can verify that this expression can be modified to (16)

One can verify that after some calculation this expression

1 2 . i, K
s )=~ G, (po)| A0’ —ann’ p can be simplified:
N “X (pot+m)? 1
, J(p,n,n")=znn"AG(pg). (17
! wm) (10 2 i
N :
(po+m)?

This result implies thad has rotational symmetry, so there is

We assume that the beam direction is defined by the vectdi© distinction between longitudinal and transversal density:

k=(|k|,0,0); then one can obtain the following particular 1

cases of the distributio(®). JL(P)=37(P)=5AG(py)=d(p), I[(P)=37(P)=0.
(1) Longitudinal polarization in a longitudinally polarized 2

target, i.e.n=n'=(1,0,0), when (18

3 Further, is it possible to express the obtained distributions
po-pn’=> plon/+ 3 pipioin! as functions ok instead ofp? For a simplification we shall
= IR =y B from now on assume that

=pio1+P2P1o2t PsP1os 11 Q%> 4M22, (19
and the relatior(10) can be simplified to which implies

2

|
14

(12 |i: V1+4M2ZQ%—1. (20

1
Si(p)= —AG(po)(er

2pg Potm/’

(2) Transverse polarization in a transversely polarized tarThen thed function term, which defines the transformation
get, i.e.,n=n"=(0,1,0), then p—x in Egs.(1),(2), will be simplified

014019-2
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Pov+palq| Pot P . distributionsAG andH differ only by a constant factor, in
g M v X0 M) (1) which the charges and polarizations of individual fermions

are absorbed:
in this limit the coordinatep; defines the beam direction.

The spin structure function€l),(2) are now simplified ac- 8 5 5
cordingly: H(Po)=KkAG(Py), k=2 € | AG(po)dp. (29)
2 3
g.(x)= Ef H(po)| m+ pﬁL 5( p0+p1_x)d_p, Now, in agreement with the results obtained 22], one
2 Potm M Po can observe the following. The relati¢®2) can be rewritten
(22 as
lf pi—pir2 (po+ p1 )dgp 2 3
)=—=| H + —x|—, K P1 Pot P2 d°p
%005 ) PP Lt TR X a5 [ as(o mepys i o PPt TE
(X) +a(X) = lf H(po)| m+ p$/2 and after integration over one gets
g1 g2 2 Po —p0+m
+ o3 r f (x)dx Kf AG(py)| £+ 2m)d3 (n3)
- - — i = ,
><6( Po pl—x)—p. (24 1 01 2 Po 3" 3p, p
M Po (31

Apparently, the convolution defined by thiefunction (21)  wheren is the direction of the target polarization atwi)
also gives the rule for transformation of the spin dlStrlbUtlonSrepresents the resu|ting projection of the Spins Coming from

expressed in the variabjeto the corresponding representa- the individual fermions. In a similar way one gets
tion in the variablex:

0dx= S s L
j(X):-f J(p)&( p0|\+/|p1_x>d3p j j(X)dX—Zj AG(po)d p 5 (32

i.e., the integral represents the resulting projection of the

:%f AG(po) 5( po;;l P1 —x>d3p, (25 total angular momentum. Further, one can easily check that
f (x)d f (x)d 1fAG( ) 1+2m)d3
+ s (X)dx= | sp(X)dx= = Po)| 5+ 5—]|d°p
sL(x)zJ'SL(p)é( poMpl—x)dsp - T 2 13" 3p,
1 p? + R N (33
_ 1 PotpPs 14°p T e
_ZJ AG(pg)| m+ Dot m I v x) .
Moreover, the following relation is valid:
(26)
K- ST(X) = g1(X) +ga(X). (34)

+

sr00= | &(p)%%—x)d% | |

Let us note that, despite our assumption that the target
consists of just three fermions, the suggested approach is
Ly more general. Since the spin functions are always based on
Po differences like Eq(4), all the resulting relations are equally

27 valid for any target consisting of fermions withG,(po)

#0, k=1,2,3, which are embedded in another system with

In the last integral we could replags by p3/2 because of compensated spin&G,(po)=0, k=4,56... .
the axial symmetry. Further, it is obvious that the densities Now we can summarize.
S/ and S}, expressed in the variabble vanish due to the (i) The functionj(x) measures the contribution of the

p
2(po+m)

Po+ pl_x)dBp
M

1

symmetry: total angular momentgspin+orbital momentumof the con-
. stituent fermions to the target spin.

1 PiP2 [ PotP1 d°p (ii) The functionss; (1y(x) measure the net spin contribu-

SL(X)=s7(x)= EI AG(pO)pO+ m 5( M X) Po =0.  fion of the constituent fermions to the spin of the target with
(28) longitudinal (transversal polarization. Clearly, one can cal-
culate also the corresponding densities of the orbital momen-
What is the meaning of the integrals in the relati¢22)— tum as

(27)? To simplify this question, let us assume the same shape
of the distributionsG,(py) for all three fermions. Then the lLm=1(X)=s (m)(X). (35

014019-3
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(iii) Obviously the functionsg,(x), j(x), s.(x), and

st(x) are equivalent in the case of static fermions, where
orbital momentum does not play any role. The considered

distribution function®AG andH have rotational symmetry in

PHYSICAL REVIEW D 67, 014019 (2003

2_ 2
Y"=Xo

Xo

2_2
X“—Xg

(y2+x5)?

. (X+Xg)?

(y+Xo)*

B(x,y)= (41)

the target rest frame, which is a necessary condition for &/0W. one can easily ch.e?ck.that in the limi§—0 the rela-
target with spind=1/2. It follows that the meaning of our t0ns(38),(39) are simplified:

function j(x) suggested abow#oes not dependn the orien-
tation of the target polarizatiofiongitudinal or transverse

with respect to the beam direction. Let us point out that the

2

last statement can be deduced only in the framework of a

relativistically covariant description, in which the rotational
symmetry of the target is properly taken into account. At the

same time, let us note that, in general, the functie(x) is

not equivalent to the measure of the longitudinal spin density

s, (x); only their integrals ovex are equalup to a factorx).

Ill. RELATIONSHIP AMONG THE SPIN FUNCTIONS

Before the next discussion we shall first prove the follow-

ing proposition. The function¥,(x) defined as

" +
vat0= [ o) 2| of P2 -],

Po=Vm?+p? (36)
satisfy

Vj'(x)_(x xg)jk om

Vo 1272 T 87

for any powerg,k and functionH for which the integra(36)
exists. Proof of the last relation is given in Appendix A.

A. Spin structure functions g;(x),g,(x)

With the use of the relation&36),(37), as shown in Ap-
pendix B, one can rewrite EqQ&3) and(24) as

1 1
9(0)=~3 a(x)VO(x)+L b(x,y)Vo(y)dy} (39
1 1
9:() +92(X) =5 A(X)Vo(X)+L B(x,y)Vo(y)dy},
(39
where
72 X_XO
ak0)= Xx2+x(2)'
3(X+Xg)2 32+ 2xx+ X3 |y2—x3
b(x,y)= 4 2, 22 ’
(y+Xo) (y=+xg) Xo
(40
_ 2XXg
A= X2+x3'

0

1 X X
0:00= Vo0 + | | 655 -2 | Vay)dy, 2
x\ oy oy
1 x* x
000+ 0:00= [ | 252 vemiay. @3
x|y y
These relations imply
I
000Vt - [ | 455 Votpdy @4
x\ Y2y
and
, 1 x 1 Vo(X)
[91(X) +ga(X)] :L(A'F_F Vo(y)dy—— —.
(49
Combining the last two relations gives
(9300 + 2007 =~ 2 (46
or
1gy(y)
0200 =~ 0,00+ [ gl;y dy, “7)

which is the known expression for the Wanzura-Wilczek
twist-2 term for theg, approximation24].

Can we now obtain a similar relation for the casg
>0, i.e., for massive fermions? Let us combine Egs.
(38),(39) into the form

g1(X)+

A(X))
1+ ) 92(X)

11

-,
and let us try to express the differentiation of right-hand side
(RHS) as a combination ofj; andg,:

A

B(x,y)— a0

b(X,y))Vo(Y)dy (48)

2)x a(x)

11 A !
Z f (B(x,w—ﬁb(x,y))vo(y)dy}

=C1(X)g1(X) + C2(X)ga(X). (49
In Appendix C it is shown that after insertingy ,g, from
Egs.(38),(39) this equation is solvable far;(x),c,(x), then
after comparing with Eq(48) we get

014019-4
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A(X) '
g:(x)+{ 1+ m)gz(x) =C1(X)g1(X) +Co(X)ga(X),
(50)
where
X2+ 4xXo+ X5
C(X)=— 55—,
(X=—=Xg) (X+2Xg)
Xo(X2+ XXo+ 4x3
6(X) = — of 2 o2 o) . 5
(X=X0) (X“=Xg) (X+2Xo)
In the same Appendix it is shown that E§0) implies
X—Xg X(X+2Xo) (1 Y2—X3
9a(X)=— » g1(x)+ 2 3 91(y)dy,
(X+Xg)* Jx Y
(52
B X X+2Xq (1 4 53
g1(X)=— X_—Xogz(x)* TXSL g2(y)dy. (53

One can check that for,—0 both the last relations are

equivalent to Eq(46).

Further, in the limitx,—0 one can also easily calculate

the momenta of the spin structure functiogs,g,. If we
define

PHYSICAL REVIEW b7, 014019 (2003

B. Spin distributions j(x), s (x), and st(x)

Now, let us try to find the relations among the spin func-
tions j(x),s (x),st(x) and the structure functiong,,g,.
For this purpose we only slightly change the definitions
(25),(26),(27) in which we replace the functioAG(pg) [Eq.
(6), the sum of spin contributions from individual fermidns
by the function H(pg) [Eg. (3), spin contributions are
weighted by the charges; see also the paragraph involving
Eqg. (29)]. The new relations read

PotP1

1
0= [ Hipd Pt xfatn, @9

1 P | [Potps \d%p
SL(X)*EJ H(po)(m+ Dot m d| VR oy
(60)
1 p? potpr |dp
ST(X)_EI H(p0)<m+ 2(pgt m) VIR oo
(61)
Now, using a standard notation
g1(X) =9g1(X) +92(x), (62
we get from the relation&24) and (61) the equivalence
gr(X)=sr(x). (63

Comparison of the relation®6) and (59) implies that

1
§(0= 3 Vo(x). (64

then after integrating by parts the following relation is ob- |, Appendix D we shown that the distributiofy,(y) can be

1
(x“)=f0 X“Vo(x)dX, (54)
tained:
Lo(1Vo(y)  (xe P
jox L v dy= P (55)

Application of this relation in Eqs(43),(42) then gives

1
fox [9100+ g2 Jdx=(x*) vy (56
Jl N dx= o alat 1) s
OX gZ(X) X__<X >(a+2)(a+3) ( 7)
for any « for which the integrals exist. The last two relations
imply
1 a
fo x| — 7 9100+ g2(x) |dx=0, (58)

which for «=2,4,6...

Teryaev @=1) sum ruled25,26].

corresponds to the Wanzura-
Wilczek sum ruleq24]. Other special cases correspond to
the Burkhardt-Cottinghama(=0) and the Efremov-Leader-

extracted from the relation@8),(39), so we get

x2+x2

3x2+2xX+ 3X3 (1 y2—x2
. 0 0 0 0
X)= X)+ d
J(x) 2 91(X) X xg)? L ¥ g1(y)dy
L[ X(y+%0)*| Y2 = X5
+ [ nf S0, y)ay, (69
x \Y(X+x0)%) 'y
X2+ x2

. 0
J(X):_MQZ(X)_Z(XZ——XS)

1 6y2x— 2yx2+ X?Xo+ 2y Xe— X3
Xf 5 g2(y)dy.

x y
(66
Then forx,—0 we have
1 11
0= 5000+ 5[ [3+2m| 2 %ay @
1 11
00— 30005 [ @y-0 2 ay. @8

014019-5



3.1 P.Zavada: Pruhled do nitra protonu v obraze strukturnich funkci 68

PETR ZAVADA

Further, comparison of the relatiof®0) and(22) implies
that

1 +
.00=0:00 - 5 [ H(popa| PP -

i
X|—.
Po

(69

The last integral can be expressed by means of the functi

V, (see Appendix E

1 X2+ x5 X—3%g [1Y?—X5
SL(X): E X2 gl(x)_z(x+xo) fx y3 gl(y)dy
L[ X(y+%0)?| Y2 = X5
+ [ SN R yay. 0
x \y(X+x0)°) 'y

A similar procedure gives also

2 2
X2+ X§

2 X(X—Xq)

1
‘)
X

One can easily check that fap— 0 it follows that

s (x)= g2(Xx)

2y—Xg X+2Xq
-— dy. 71
2y X2X%)92(y) y. (7D

1 1 1
s00=5a00+ [ [ 2|2 Way 22

1 11 1
SL(X)=— Egz(x) + L v ;) ga(y)dy. (73

Finally, combining the relation§52), (53), and (63) one
gets

X(X+2Xg) (1 y>—X3

Xo
gr(¥) =200+ xxg? Y g1(y)dy,
(74
B Xo X+2Xqg (1
0=~ 550 | wdy. (79

and forxy—0 it follows that

1 11
a0 [ B ay-—2[‘aumay. 9

PHYSICAL REVIEW D 67, 014019 (2003

IV. VALENCE QUARKS

Now let us try to apply the suggested approach to the
description of the proton spin structure. For simplicity, as in
[22], we assume the following.

(1) The spin contribution from the sea of quark-antiquark
pairs and gluons can be neglected. Then the three fermions in
our approach correspond to the three proton valence quarks.

ogo, in this scenario, the proton spin is generated only by the

valence quarks. Let us remark that[22] we showed that
this assumption does not contradict the experimental value
I
(2) In accordance with the nonrelativistic 8) approach,
the spin contributions of individual valence terms are given
as

s,=4/3, s4=—1/3. 77

Let us denote the momentum distributions of the valence
guarks in the target rest frame by the symbg|sandhgy with
the normalization

1
5| nupodn= [ nupodp-1 @8

then the generic distributio(8) reads

2\22 1\21

3] 3hu(Po)—| 3] 3ha(Po)-
(79

H(po) =2, e?Ah;(po)=

In Refs.[19,21], using a similar approach, we studied also
the unpolarized structure functions. In particular, we sug-
gested that the structure functiéi can be expressed in the

limit (19) as
x>d3p,

K(po>=§ eihq(po), (80)

M [PotPp1
Fa(x =x2fK —5( -
2(X) (po)po M

whereh, are the distributions of quarks with charges For
the valence quarks one can write

4 1
Fa(x)= §XUV(X)+ §de(x)§ 81

then Eq.(80) can be split:

B M [PotP:
avi0=x [ ngporsed| 2

—x)d3p, gq=u,d.

At the end of this section let us point out that the simple (82)
relations above, which define mutual transformations among

the functionsgy(x), g2(x), j(X), s (x), and sy(x), are

In accordance with the definitio(86), in which hy is in-

obtained on the assumption that the fermions have someerted instead dfi, one can write
fixed effective masx,. In a more general case, for example
when the structure functions are related to a system of fer-
mions with some effective mass spectr{i2i], such simple
transformations do not exist.

Qv(x)=xV2 1(x), (83
then the relation(37) implies

014019-6
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1 2 101 X3 s1(x)=g7(x)+g3(x)
Vg(x):i X+ V3(x)+ Ef 1-— Vi (x)dy,
" Y (84 :E Eq (X)+ (X+X )2J1ﬂqv_(y)d
2| x o ) (y+x0)° Y '
which after inserting from Eq(83) gives (93)
1 5 1 X5 | av(y) Further, after inserting terms from the relatiof@), (85)
Adx)= — — _ = ' f )
Vo) =3 (1+ 2 QV(XHI 1 2y d and (83) into Eq. (E1) one easily gets
a 1 X3 )
Obviously, the functionV,(x) generated by the distribution SLx)=7 1+ > | Av(X) —4(X+Xo)

(79) according to the definitioi36) can be decomposed as

8 1 le Y—Xo qv(y)d
Vo(x)= Vo(X) Vo(X) (86) x (y+xg)® Y
2
and if we define N Jl 1o ﬁ) av(y) q 4
X y2 y
8 1
We(X) = 2—7uv(x)— 2—7dv(x) @7 Let us remark that Eq(E1) is obtained from the generic

distributionH (py); in its place we now have the distribution
then one can check that insertig from the relation(86)  hq(Po). Similarly, a comparison of the relatior(64) and
into the relations(38),(39) with the use of Eqs(85),(87) (85) gives

gives
. 1 X5 L av(y)
1 1oy—Xo Wy(y) 190=7 <1+ )QV(X)"_f 1——) = dy|.
91(X) = 5| Wg(x) - 2(x+x0)2f — dy|, y?) Y
(Y+Xo)® Y (95
(88 . .
Now, the net complete spin distributions can be obtained by
1 Xo adding individual valence terms with the weigkits), taking
go(x)= ke ( 1- 7) Wy(X)+3(X into account their normalizatiofv8). If we define
1 Xo Wl ) 2 d 96)
Xo zf y— 03 gy dy|. 89 W(X) = UV(X) v(X), (
(Yy+x0)® ¥

then the complete spin distributions can be obtained from the
Obviously, the structure functions can be split into two partsyelations(93)—(95), in which the distributiorgy, is replaced

corresponding ta andd quarks, by wg. Then forx,—0 we obtain
2\? 1\21
_ d -
91(X)‘(§ 3900 5) 300, j=12. (%0 0100 = 5| Wy -2 [ —Wg(sy)dy}, @7
x Y
where the partial structure functions read
g,(x)= ! W, (X) + 3%2 ' W—g(y)dy (99
1 Y=Xo au(y) 20751 3 '
f(x X) = 2(X+X 2f : oy
g1(x)= QV( )—2( o) (yx0)? Y
(91) 1 1w,
si0=y [ " Lay, (99)
1 Xo y
93(x) = 5{(1 Y) Av(X) +3(X+Xg)?
1w 1w
sL(x)= 7| Ws(x) —4x J %y)dw f Ly)dy}
1 y=Xo quly) B x Y y
X | —— dy|, g=u,d. (92
x (y+x)® Y (100
Now we can express the corresponding contributions of dif- 100 == wyx)+ les(Y) dy (101)
ferent quarks to the spin distribution functions. Clearly, s x Y '

014019-7
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Let us note that, if one assumeg(x)~2d,/(x), then the
following substitution can be used:

F2v |
W)=

(102

Further, let us make a remark about the normalization o
the distributions above. To simplify this consideration, we
assume the casg—0. The relation(83) implies

1 1
f qv(x)dx=f xV4 (x)dx. (103
0 0
Since the relatior{37) implies
2 1 Vi(y)
v‘ll(x):—vg(x)—zf oY dy, (104)
X X y2
then using the relatiofD7) one gets
1 1
f qu,l(x)dx=f Vi(x)dx. (105
0 0
From the definition
+
vioo- | hq<po>5( p°Mpl—x)d3p (106
one obtains
! 3
| Vaoodx= | nytporce. (107

This relation combined with Eq$105 and(103) gives

1
fo QV(X)dXZJ hqe(Po)d®p, (108

which in accordance with the normalizati¢ng) implies

1

5 (109

1 1
f uV(x)dx=f dy(x)dx=1.
0 0

PHYSICAL REVIEW D 67, 014019 (2003

94(x)

f

FIG. 1. Proton spin structure functions. Our calculation, which
is represented by the full lines, is compared with the experimental
data: dashed lineg) and full circles @,).

angular momenturd=I+s=1/2, which has been discussed,
e.g., in[27]. The integrals over the net spin contributions
st,S. are correlated withl’;, which reaches its minimal
value forx,—0, as we discussed {i22]; see also Eq(31)
above.

So the formulas obtained enable us to calculate the spin
functions from input in which only the valence distributions
are used. For simplicity we shall now consider only massless
quarks &,—0) and for the valence functionsu,/(x) and
xdy(x) we use the parametrization obtaingfor Q?
=4 Ge\?/c?) by the standard global analysis[i28]. In Fig.

1(a) we show the result of our calculation fg; according to

Eq. (97) together with the experimental data represented by
the new parametrization of the world data gn[4] for Q2

=4 Ge\?/c?. The calculation agrees well with the data
qualitatively; however, it is apparent that the data are above
our curve. This can be connected first of all with our simpli-
fication forxo—0, whenI'{ is minimal. In accordance with
Eg. (112 we obtain [';=0.093, but experimentallyl’}
=0.118+0.004(stat}= 0.007(syst) atQ’=5 Ge\?/c? [4].
Just this difference is exposed in the figure. Further, in Fig.
1(b) we showg, according to Eq(98) and the precision
measurement recently published by the E155 Collaboration
[5]. The agreement with the data is very good and might
suggest that the dependence of the functigron the mass
terms is rather weak. At least in our approdch does de-
pend on mass, biit,= 0 regardless of the mass. In Fig. 2 the
corresponding spin distributionssy,s, are shown for the

Now, one can also check the normalization of the functionsvhole proton and also separately foandd valence quarks

(97)—(101). Taking into account that
1 1 5
J' we(X)dx=1, f wy(x)dx= 3, (110

0 0 9

then after integration with the use of relatiéD7) one gets

1

)

1 5 1
[Ca0ax-o;, [ a000x-0

1

S (x)dx= 5
(111

sT(x)dx:f

[NICEE
0dxe &
0J(><) x=3 .

(112

10

15

j(x),s(x)

o N Ao ©
—

FIG. 2. Calculation of the spin densities of the valence quarks
inside the protor{left) and separately the contributions framand
d quarks(right). Full lines represent the total angular momepta

The meaning of these integrals was discussed in Sec. Il. Théotted and dashed lines correspond to longitudinal and transverse

first integral(D7) represents the sum rule on the total proton

densitiess; andsy.
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corresponding to the assumed BUsymmetry, which gives quark distributions. Then as input we used the parametriza-
the fractiong(77). Figure 1a) and the left part of Fig. 2 also tion of the valence terms resulting from the standard global
demonstrate thag;(x) and s (x) are not equivalent. The analysis. On this basis, without any other free parameter, the
slightly different shape of the distributions @q ands, is  proton spin structure functions and related spin densities
due to the variablg, in which longitudinal and transvergm  were calculated. Comparison of the obtained structure func-
respect to the beamyuark momentum components are nottions g;(x) and g,(x) with the experimental measurement
involved in a symmetric way. Otherwise, for a given direc- demonstrates that the suggested approach well reproduces
tion of the proton polarization, the quark spin density cannothe basic features of the data on the proton spin structure.
depend on the direction from which the probing beam is To conclude, the results presented in this paper and the
coming. discussion irj22] suggest that both the proton structure func-
Finally, let us remark that another possible effect, whichtionsg,; andg, have a simple and natural interpretation even
can in our approach contribute to an underestimatioh of  in terms of a naive QPM, provided that the model is based on
is connected with the assumptidn7). For example, if one a consistently covariant formulation, which takes into ac-
assumes full spin alignment of thevalence quarks, then counts spherical symmetry connected with the constraint
=1/2. This is not satisfied for the standard formulation of the

Su=2, sq=-1, (113  QPM, which is based on one-dimensional kinematics related
_ S only to the preferred reference systémfinite momentum
and instead of the generic distributi¢87) one gets frame. As a result, there is, e.g., the known fact that the

4 L . function g,(x) has no well-defined meaning in the standard
_ ! _ naive QPM. In this case it is just a result of the simplified
Wq(X)= §UV(X) §dV(X)’ fo Wq(X)dx= 9’ kinematics and not because of an absence of dynamics.

(114

which impliesT";=7/54=0.13. Obviously, assuming isoto- ) )
pic symmetry, the same procedure can also be used for the | would like to thank Anatoli Efremov and Oleg Teryaev
neutron. For the isotopic counterparts of the compositiondor many useful discussions and valuable comments.

(77) and (113 one getsl']=0 andI'}=—1/27=-0.037,

respectively. The compositiofi113 gives the maximum APPENDIX A: PROOF OF THE RELATION (37)
valueI'; for the proton and the minimum for the neutron.
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V. SUMMARY AND CONCLUSION Po+ P21
. _ . . F(x>=f K(po)é( Vi X)d3p, Po=Vm?+p?,
With the use of a consistently covariant version of the (A1)

naive QPM we have studied the spin structure functions to-
gether with the spin density distributions for a system of
quasifree fermions having fixed effective magss m/M and
]Eorlal spinJ=1/2. The main results can be summarized as p = [p2-p2—m?Zsing, ps;=/p2—p2—m?cose
ollows.

(1) We have shown that the corresponding spin structure (A2)
functions g;(x) and g,(x) are mutually connected by a reads
simple transformation. In the limity— O this transformation
is identical to the Wanzura-Wilczek relation for the twist-2 _ Emax H [ Pot Py
term of theg,(x) approximation. At the same time fog F(X)—Zﬁfm K(Po)Po J,H O = —*|dPu|dPo,
—0 the relations for theth momenta of the structure func-
tions have been obtained. Their particular cases are identical H= p%— me. (A3)
to the known sum rules: the Wanzura-Wilczek sum ruie (

=2,4,6...), the Efremov-Leader-Teryaev sum rulen ( For givenx andp, the inner integral contributes only for
=1), and the Burkhardt-Cottingham sum rule=0). Fur-

after the substitution

ther, we have shown how the structure functions are con- p;=MXx—pg (A4)
nected with the net spin densitigg(x),st(x) and with the
density of the total angular momentuijr(x). in the limits
(2) The proposed approach was applied to a description of
the proton spin structure with the assumption that the proton —Jpg—mP<p;<pj—m* (A5)

spin is generated only by the spins and orbital momenta of

the valence quarks. Apart from that we assumed that the spf@ne can check that the last two conditions are compatible
contributions fromu andd valence quarks can be defined by only for
the SU6) symmetry and for the quark effective mass we 5
used the approximatior,— 0. We suggested how one can D= £= BJF m (A6)
in this approach obtain the spin functions from the valence o= 2 2Mx’
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It follows that Eq.(A3) can be simplified to

EmaX
F(x)=27M L K (o) pad Po. (A7)

According to the relatioriA6) the parameteg is a function
of x with a minimum atx,=m/M, so for fixed¢ there are
two roots ofx,

ExJE—m?

= (A8)

so that Eq(A7) can be rewritten as
o[

Emax
M ):ZWMJ K(po)podpo.  (A9)
3

Then differentiation with respect t gives

. gxE8-m?\ [ 1 &
F( v ) i Mng—) —27MK(§)¢&
(A10)

and this relation can be, with the use of E48), applied to
the functions(36):

n
V(X2 )Xs =7 2M2H(£) £\E2 - mz( é) , (ALY
which with use of the relatiofA6) implies the relatior(37).

APPENDIX B: PROOF OF THE RELATIONS (38),(39)

In the relationg22)—(24) one can, due to thé function,
make the following substitutions. First,

P1=MX—pg (B1)
and then from the relation
pF=p5—pi—m’ (B2)
one gets
p2=2Mxpy— (M2x?+m?). (B3)
Now the relation(24) can be rewritten
91(X)+92(X)— - XoV - (X)+f H(po)
( Mxpo— (M?x2+ m2)/2>
Po(Po+m)
X 8 po'\: Pr_, dsp}. (B4)

In the next step we expand the fraction

PHYSICAL REVIEW D 67, 014019 (2003

1 1 ( m)'_ (5)
PotM Po =0 Po/ '
then the relatior{B4) can be expressed in terms of the func-
tions (36) as

)

1 X .
9100+ 820 = 5| XoV-1(0~ -~ 2 (=X0)V_(%)
0]j=1

©

jz

X5 —

(B6)

2 XO)jVj(X)}
(X+Xg)?

2
Xo

=3 (X+Xg)V_1(X)—

XJ-ZZ (—%o)V_j(x)].

Further, from the relatioi37) one obtains

and because

(B7)

2y l-V’( )d
y2+Xé oly)ay

_ ax3y?
(Y+X0)2(y2+x3)

(B8)

the relation(B6) can be modified

1
91(X)+92(X)— 5 Vo(y)dy

—(X"‘Xo)f

)2 22
(X Xo) f AXoy Vi(y)dyl.

2x5 (Y+X0)2(Y?+X5)

(B9)

Now, integration by parts gives

1
9100+ 9200 =3

( ) 2X
X+Xo)
X2+ x5

(X+Xg)? 4x5x?

Vo(X)

2x5 (X4 X)2(x2+x3)

8x3y(y3—x3)
(y2+X3)%(y+Xo)

(X+Xg)?

Vo(y)d
ZXS 3 O(V) y

(B10)

and one can check that after some modifications the corre-
sponding terms ahead ¥f, coincide with the function$41).
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The relation(38) can be proved by a similar procedure, so Then, integration by parts gives
we suggest only the main steps:

()= — 2|~ (2x 4 x0)=>
X)=— 5| = (2X+Xo) =
92 2 OX2+X2

1
gz(X)—— XV_1(X)— Vo(X)+f H(po) 0
2 22 2
(po 3Mxpo+ (3M3%x%+m )/2) 3(x+%g)2 4x2x?
Vo(X
Po(Pot+m) 23 (X+Xg)2(X2+x3) o)
+
s M_x)dsp},
M {f{rs
2 0 0)2
1 ” 2 20,03 o3
6200= = 3| XV-100 = Vo) + X (=x0)!V(x) 30X BYYTTX) )y
25 (Y*+X5)%(y+%0)’?
X . 3x%+ X3
+3 - Z (—=X0)'V_;(x)+ and one can check that the corresponding terms ahe¥g of
0=t 0 coincide with the functiong40).
XJZZ (_Xo)jVi(X)} APPENDIX C: PROOF OF THE RELATIONS (50)—(53)
First, if we define the functions
1 3(X+Xo)?
=—3 —(2x+x0)V_1(x)+T
0
22 2 2
- Y =Xo Y"—Xo
| fiy)= ——2 f(y)=——2 (L
ijz:z (_XO)JVJ'(X)} v (Y+%0)*o 2y) (Y2 +x5)%Xo (D
=200 X0 e A+ ac =25
X , X)=A(X)+a(x)=——,
gz(X)=— (2X+Xo)f Vo(y)dy 3 a(x)  X—Xo 4 X2+ X2
(C2
3(x+Xp)2 (1 4x2y?
_ (x )2(0) J' 20y2 5 V(’)(y)dy} then taking into account Eq$38)—(41), Eq. (49) can be
2x5  Ix (Y+X0) (Y +Xp) rewritten

1 , (1 '
_(X"‘Xo)zfx f1(Y)Vo(y)dy+ (x*=xg) L fz(Y)Vo(Y)dY}

1 1 4
+ —fe,(X)3(X+><o)2Jx f1(Y)Vo(y)dy+ f3(x)(3x2+ 2XXo+ X5) JX fz(Y)Vo(Y)dy}
1 1
=01(X)1‘4(X)V0(X)+01(X)2(X+Xo)2fX f1(Y)Vo(y)dy—C1(X) 2(X2+ XX+ X) L f2(y)Vo(y)dy
1 2 1
—CZ(X)a(X)Vo(X)—cz(X)3(X+xo)2L f1(Y)Vo(y)dy+Ca(X) (3X2+ 2XXo+X5) L f2(y)Vo(y)dy. (C3)

After differentiating the LHS one gets
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1 1
—2(X+Xo) L f1(y)Vo(y)dy+ 2XL f2(y)Vo(y)dy

2—2xx0—x§f1f
(X—=Xo (x=x%0)%  Jx

+[(x+x0)2f1(x)— (X2=X3) T 5(X) + F3(X) 3(X+ X) 2F1(X) — F5(X) (3X2+ 2x X+ X3)  2(X) [Vo(X)

X —2xx0

~ 3%, f FA(y)Vo(y)dy-+ 3%, L(Y)Vo(y)dy

(022
:Cl X
X2+ x5

1 1
Vo(X)‘*‘Cl(X)Z(X"'Xo)ZL f1(Y)Vo(y)dy—ca(x)2(x*+ XX+ X5) L fa(y)Vo(y)dy

X—X
*CZ(X)ZXX Vo(X) Cz(X)3(X+Xo)2f f1(y)Vo(y)dy+co(x)(3x +2xx0+x0)f fa(y)Vo(y)dy.
(CH
T
This equality contains the three linearly independent terms X+ 2%o xo(x2+xx0+4x§)
C’(X) 2 2 =- 2 2 gZ(X)
1 1 X“—Xp (X—Xp) (X“—Xg) (X+2Xq)
Voo, [ tnveay, [ fanvamay, ] ,
(C5) _(X_Xogz(x)) : (C1Y
and comparison of these terms on both the sides gives the
equations which has the solution
(X=X (x—xg) =~ 28 (e
Clxx_sz X_XO = - y
X g C= Xy e ga0 [ waydy. (€12

2 2
2X°—XXg— TXp

2 — - _—
01 =360 =~ st

€7 Atter inserting this into Eq(C10 one gets the relatiofb3).
The inverse relatiori52) can be proved in a similar way.

2¢1(X) (X2 + XX+ X3) — Co(X) (X2 + 2XXo+ X3)

3 2 2 3 APPENDIX D: PROOF OF THE RELATIONS (65),(66)
2X7—X“Xg— 4XX5— 3Xq

= ) C8 i
(Xx0)? (C8) The relations(38) and (39)
One can check that these three equations V\_/i'['h the two un- X—Xo 1] 3(x+xg)?
knownscq,c, are dependent and solvable, giving the solu- 92(X) = —| X ZVO(X)‘FJ. —
tion (51). X+ Xy x\ (Y+Xo)
Now, we can solve the differential equati¢s0) for g, or 2
g,. Its homogeneous version fgy reads 320016 | Y2 X 0y (vid
2.2 2 O(y) Y
(y*+x5)
, X2+ 4xXo+ X5
91(x)+ ﬁgl(X)ZO, (C9
(X“=Xg) (X+2Xo) 1 (x+x%)2
) ) 91(X) +ga(X) = Vo( )+ J i —t
which has the solution x|\ (Y+Xo)
X2_X2 y2_)(2
X+ 2Xq +—2 12Oy (y)d
0i0=C" 2. (10 V] 2% VW
%0

The nonhomogeneous terfthe part of Eq.(50) involving
d,] gives the equation for the functio@(x)

can be combined in such a way that the second terms in the
integrals cancel:
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(3X2+ 2X%g+ X3) g1 (X) + 2(X2+ XXg+ X3) g2(X) gives the solution
= + _ + + 2
(X+2Xg)XVo(X) = (X4 2X0) (X+Xg) Vo(x)=C (D4)
i
x (y+xo)4V°(y)dy' (D) and forC(x) we have the equation
Further, this equation can be modified to ) )
c' (%) 3X°+ 2XXg+ Xg -
'(X)=| ———————=g1(Xx
1y?-x5 q (X+Xg)? (x+2x0)(x+xo)zg1
(X7 x )zVo(X)— ) (y+—x)4VO(y) y
0 0 . 2(x?+XXo+ X3) - ' 09
3+ 2xx0+XG . 2(X?+ XX+ X3) s (X+2x0)(x+x0)292 :
(X+2%0) (X+X0)2 T (x+2%g) (X+x%g)2 o
which implies a differential equation fory(x): The solution reads
X Vo) '+ X2—x5 Vo) v c 3X%+2xXo+ X3
—— V(X ——— V(X - _or e
(X+xg)? ° (x+xg)* ° o) =Clx) (X+2Xg)x 9.(%)
3x2+ 2x%+ X5 . 2(X%+xXo+ X5)
= Zgl(x) (X+ 2% )X gZ(X)
(X+2X0) (X+Xg) 0
, 24 2y %+ X3) (Y —
2(X%+ XX+ X3) ) 02 +fl (3y"+ 2yXo+ xo)(y ZXO)gl(y)dy
————————0a(X + +
(X+2X0) (X +X0)? X (YFXo)(y+2X0)y
2 2 _
The corresponding homogeneous equation + fl 20y YXot Xo) (Y = Xo) g,(y)dy. (D6)
x  (Y+Xo)(y+2x)y?
———V(x)=0 (D3) o
(X+Xo) After inserting terms from Eq52) one gets
|
3X%+ 2xXo+ X3 202+ xx9+X3) [ X—Xo X(X+2Xo) (1 Y2—X5
Vo(X)= X)+ - X)+ d
o(X) (X+ 2%g)X 91(x) (X+ 2%g)X X 91(x) (x+x)2 Jx 3 g1(y)dy
1 (3y?+2yXo+X5) (Y~ Xo) 12(y2+y X+ X0) (Y=%0) [ Y—Xo
+ > gu(y)dy+ > |~ 91(y)
x (Y Xo)(y+2%o)y X (Y+Xo)(Y+2Xo)y y

y(y+2x0) [12°=%5
+ yixa? dy 7 01(z)dz|dy.

The double integral is calculated according to the formula ~ APPENDIX E: PROOF OF THE RELATIONS (70),(71)

[Fawy

1 1 In the relation(69) one can, due to thé function, make
f b(z)dz)dy:j (A(y)—A(x))b(y)dy, the substitutionp;=MXx—pg. Then, using the definition
y x (36), one obtains

A’ (xX)=a(x); (D7)

1 1
then after collecting the corresponding terms vgthwe ob- SL(X)=81(X) + 5 Vo(X) = 5XV_1(X). (ED)
tain with the use of Eq(64) the relation(65). A similar
procedure with inserting terms from E@3) into Eq. (D6)
gives the relatior(66). Further, the relatiori37) implies that
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V0= -2y )2f1 y2_ng )d

_1(X)= = Vo(x)— — :

1( X2+X3 0( « (y2+XS)2 O(y y
(E2)

which after inserting into Eq(E1) gives

x2+x2

PHYSICAL REVIEW D 67, 014019 (2003

2

- i VN Jl X0\
SL(X)=9g1(x) 20 13) o(X) +x x (YPxR)? o(y)( Y;
E3

After inserting Vo=2j(x) and using the relatiori65) we

obtain

X(y+x%0)2| Y2 —x§

S =5 5 6100~

2(X%+x3) (X+Xg)?

x2—x3 3x2+2xxo+3x§J‘1 y2—x35 W X?—x35 f1|
- n
y T ane

y2—x5 3y?+2yxe+3x3

X

0
d
WOTEY] g:(y)dy

2

1 y?—x2 1
XJ —Ozgl(y)derXL

x (Y2+X3)y (y?+x5)?
LYPoxg (1 Yz %0)?| 22X
ZXJ 2 2 ZJ ln 2
x (ye+xp)°Jy  \z(y+Xp) z

(Y+Xo)?

1722 A
"2 au2dzay
y VA

—0i(2)dzdy

Then calculation of the double integrals with the use of the reldff) and collecting the corresponding terms withgive

the relation(70).

Further, one can insegy from the relation(53) into the relation(70); then a similar procedure with double integrals gives

the relation(71).
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Abstract. A covariant version of the quark—parton model is studied. The dependence of the structure
functions and parton distributions on the 3D intrinsic motion of the quarks is discussed. The import-
ant role of the orbital momentum of the quark, which is a particular case of intrinsic motion, appears
as a direct consequence of the covariant description. The effect of the orbital motion is substantial, es-
pecially for polarized structure functions. At the same time, the procedure for obtaining the momentum
distributions of polarized quarks from the combination of polarized and unpolarized structure functions is

suggested.

PACS. 13.60.-r; 13.88.+¢; 14.65.-q

1 Introduction

The nucleon structure functions are a basic tool for un-
derstanding the internal structure of the nucleon in the
language of QCD. At the same time, measurement and
analysis of the structure functions represent an import-
ant experimental test of this theory. Unpolarized nucleon
structure functions are known with high accuracy in a
very broad kinematical region, but in recent years also
some precision measurements on the polarized structure
functions have been completed [1-8]. For the present sta-
tus of the spin structure of the nucleon, see e.g. [9] and
references therein. The more formal aspects of the struc-
ture functions of the nucleon are explained in [10]. In
fact, only the complete set of the four electromagnetic
unpolarized and polarized structure functions Fy, Fs, ¢1
and go can give a consistent picture of the nucleon. How-
ever, this picture is usually drawn in terms of the dis-
tribution functions, which are connected with the struc-
ture functions in some model-dependent way. Distribution
functions are not directly accessible from experiment, and
the model that is normally applied for their extraction
from the structure functions is the well known quark—
parton model (QPM). Application of this model to analysis
and interpretation of the unpolarized data does not cre-
ate any contradiction. On the other hand, the situation
is much less clear in the case of the spin functions g
and gs.

In our previous study [12,13] we have suggested that
a reasonable explanation of the experimentally measured
spin functions g; and g is possible in terms of a generalized
covariant QPM in which the intrinsic motion of the quarks

a e-mail: zavada@Qfzu.cz

(i.e. 3D motion with respect to the nucleon rest frame) is
consistently taken into account. Therefore the transversal
momentum of the quarks appears in this approach on the
same level as the longitudinal one. The quarks are repre-
sented by free Dirac spinors, which allows one to obtain
an exact and covariant solution for the relations between
the quark momentum distribution functions and the struc-
ture functions accessible from experiment. In this way the
model (in its present LO version) contains no dynamics
but only the “exact” kinematics of the quarks, so it can be
an effective tool for analysis and interpretation of the ex-
perimental data on the structure functions, particularly for
separating the effects of the dynamics (QCD) from the ef-
fects of the kinematics. This point of view is well supported
by our previous results.

In the cited papers we showed that the model sim-
ply implies the well known sum rules (due to Wanzura—
Wilczek, Efremov-Leader—Teryaev and Burkhardt—
Cottingham) for the spin functions g;, go. Simultaneously,
we showed that the same set of assumptions implies a
rather substantial dependence of the first moment I} of the
function g; on the kinematical effects. Further, we showed
that the model allows one to calculate the functions g1
and g, from the unpolarized valence quark distributions,
and the result is quite compatible with the experimental
data. In [14] we showed that the model allows one to re-
late the transversity distribution to some other structure
functions.

These results cannot be obtained from the standard
versions of the QPM (naive or QCD improved), which are
currently used for the analysis of experimental data on the
structure functions. The reason is that the standard QPM
is based on the simplified and non-covariant kinematics in
the infinite momentum frame (IMF), which does not allow
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one to properly take into account the intrinsic or orbital
motion of the quarks.

The subject of our previous study was the question:
what is the dependence of the structure functions on the
intrinsic motion of the quarks? The aim of the present pa-
per is a discussion of related problems: how can one extract
information about the intrinsic motion of the quarks from
the experimentally measured structure functions? What is
the role of the orbital momentum of the quarks, which is
a particular case of the intrinsic motion?

The paper is organized as follows. In the first part of
Sect. 2 the basic formulas, which follow from the general-
ized QPM, are presented. The general covariant relations
are compared with their limiting case, which is represented
by the standard formulation of the QPM in the IMF. In
the next part of the section we calculate the 3D momen-
tum distributions of the quarks and the structure functions
are used as the input. The momentum distributions of pos-
itively and negatively polarized quarks are separately ob-
tained from the combination of the structure functions F5
and g7 or the corresponding parton distributions ¢(z) and
Ag(z). A particular form of intrinsic motion of the quarks
is the orbital momentum. In Sect. 3 the role of the orbital
momentum of the quark in covariant description is dis-
cussed, and it is shown why its contribution to the total
angular momentum of the quark can be quite substantial.
It is demonstrated that the orbital motion is an inseparable
part of the covariant approach. The last section is devoted
to a short summary and to our conclusions. In fact, this
paper is inspired by many previous papers, see e.g. [15—
27], in which the problem of the orbital momentum of the
quarks in the context of nucleon spin was recognized and
studied.

2 Structure functions
and intrinsic quark motion

In our previous study [11-13] of the proton structure
functions we showed how these functions depend on the
intrinsic motion of the quarks. The quarks in the sug-
gested model are represented by free fermions, which are
in the rest frame of the nucleon described by a set of dis-
tribution functions with spheric symmetry, GkjE (po)d3p,
where pg = v/m?2+ p?2, and the symbol k represents the
quark and antiquark flavors. These distributions meas-
ure the probability to find a quark of given flavor in the

state
L ¢)\n .
\/N popfm (;b)\n ’

1 2po
—no =A , ,
) ¢>\n ¢>\n o Tm

u(p, An) =

N= (1)

where m and p are the quark mass and momentum, A =
+1/2, ¢>\n¢’>\n =1 and n coincides with the direction of

the polarlzatlon of the nucleon. The distributions together
with the corresponding quark (and antiquark) charges ey,
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allow one to define the generic functions G and AG*:

G(po) = Zein(po) , Gr(po) = G5 (po) + Gy (po) ,
k

(2)

AG(po) = Y e} AGk(po), AGk(po) = G (po) — Gy, (po) ,
k

(3)

from which the structure functions can be obtained. If ¢ is
the momentum of the photon absorbed by the nucleon of
momentum P and mass M, in which the phase space of the
quarks is controlled by the distributions Gf (po)d3p, then
there are the following representations of the correspond-
ing LO structure functions.

Manifestly covariant representation

First we have the unpolarized structure functions:

Fi(z) = %(/Hg), Fy(a) = 20 <A+ g) @

2M~ Y
where
_ 1 Pp o< P4 d3p
g foFmn(B)
_ L [o(PP\[(Pe\*, PD)(PD) _pq
j‘t”‘Pq/G(J\DKZw)+ ME 2
pq d3p
) — 6
(Pq m) 0 ()
and

(7)

The functions Fy, = MW; and F; =
from the tensor equation

4a4p Pq Pq Ws
(o258t (=) (- ) 3

P
= / G <pﬁ) [2paps + Pads + 4aPs — 9oppq]
_ mQ) d’p
Do

L'n [12,13] we used a dlfferent notation for the distributions
defined by (2) and (3): G , AGy and AG were denoted hy4,
Ahj, and H. Apart from that we assumed for simplicity that
only three (valence) quarks contribute to the sums (2) and (3).
In the present paper we assume contributions of all the quarks
and antiquarks, but apparently the general form of relations
(4)—(7) and (10)—(12) is in the LO approach independent of the
chosen set of quarks.

(Pg/M)W, follow

x 5(<p+q>2 (®)
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. . . 1 2 _p2 /9
The modification of the delta function term ga(z) = — 5 /AG(po) (Pl i p;O f};{ )
3((p+q)* —m?) = 8(2pg +¢*) Po+p1 d3p
2 x -z |—, (16)
=4(2Pq Py Q_ M Po
Pq 2Pq
1 pq where p; and pr are the longitudinal and transversal mo-
= W(S <P— — a:) , mentum components of the quark. These structure func-
q q 0 tions consist of terms like
2 2
F=-Q, =2 "
2Pq Mx/G o) < Potpr_ )—p, (17)
introduces the dependence on the Bjorken variable . Then 9 bo
contracting with the tensors gog and P, Pg gives the set of Ag(z) = /AGq (po) <m—|—p1 + p1 >
two equations, which determine the functions F; and F} in Po+m
accordance with (4)—(7). 5(Potp d’p 18
Next, we treat the polarized structure functions. As . ot po (18)

follows from [12] the corresponding spin functions in co-
variant form read

(Pq)*
qS

P
QIZPQ<GS*_qGP> y g2= Gp, (10)
qS
where S is the spin polarization vector of the nucleon, and
the functions Gp and Gg are defined by

Goo M pPY_ pS

P = 9pPg M ) pP+mM
1 pu pq d°p
1+—(pP—2P 2 )=£
<[t (= o) o (5 2)

o= g 26 (5 ) e

Pq
X6<Pq

u:q+(qS)Sf(]\Z%)P.

Rest frame representation

We now come to the rest frame representation for Q2 >
4M?x2. As follows from the appendix in [12], if Q% >
4M?z? and the above integrals are expressed in terms of
the rest frame variables of the nucleon, then one can sub-
stitute

pq  Po+Dpi
- ‘> j——
Pq M

and the structure functions are simplified as follows:

_ Mx Po +Pp1 d3p
@ =22 G(m)a( - ) 2y
+ d?
Paa) = Ma* [ Gs( P -2) SE )
( )—1/AG( YT
ga1\x) = B Po)|l MTp1 Pot+m
po+Dp1 d3p
6 ) &P 15
( M x) Do (15)

which correspond to the contributions from different quark
flavors, ¢ = u, u,d,d, s, 8, ... Let us remark, in the limit of
the IMF approach (see next paragraph), that these func-
tions represent probabilistic distributions of the quark mo-
mentum in terms of the fraction z of the momentum of the
nucleon, p = xP. However, the content and interpretation
of the functions (17) and (18) depending on the Bjorken
variable x is more complex; their form reflects in a non-
trivial way the intrinsic 3D motion of quarks.

Standard IMF representation

On the standard IMF representation we remark the follow-
ing. The usual formulation of the QPM gives the known
relations between the structure functions and the parton
distribution functions [10]:

= @), B =Y @), (9)

= % ; egAq(w), g2(x) =0, (20)
where the functions
g(x) =q (2)+q (), Agq(x)=q"(z)—q (z) (21)

represent probabilistic distributions of the momentum
fraction x of the quark in the IMF. In Appendix A we have
proved that these relations represent the particular, limit
case of the covariant relations (4) and (10).

The three versions of the relations between the struc-
ture functions and the quark distributions can be
compared. If we skip the function g, in the IMF rep-
resentation, then the relations (19) and (20) practically
represent the identity between the structure functions and
distributions of the quark momentum fraction. Such sim-
ple relations are valid only for the IMF approach based
on the approximation (A.1l), which means that the in-
trinsic motion of the quarks is suppressed. In the more
general versions (the covariant and the rest frame represen-
tation), where the intrinsic motion is allowed, the relations
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are more complex. The intrinsic motion strongly modifies
also the go. In the standard IMF representation one has
g2(x) =0, but g2(x) # 0 in the covariant and the rest frame
representations.

The rest frame representation allows one to easily
calculate the dependence of the first moment I on
the rate of intrinsic motion. A more detailed discus-
sion follows in the next section. The same approach im-
plies that the functions g; and g» for massless quarks
satisfy a relation equivalent to the Wanzura—Wilczek
term and obey some well known sum rules, as is shown
in [12].

The functions F; and F, exactly satisfy the Callan—
Gross relation Fy(z)/Fi(x) =2z in the rest frame and
the IMF representations, but this relation is satisfied only
approximately in the manifestly covariant representation:
Fy(z)/Fi(x) =~ 2z + O0(4M?*2%/Q?).

The task which was solved in the different approxima-
tions above can be formulated as follows: how can one
obtain the structure functions Fj, F» and ¢;, go from
the probabilistic distributions G and AG defined by (2)
and (3)? But now we will study the inverse problem; the
aim is to find a rule for obtaining the distribution functions
G and AG from the structure functions. In the present pa-
per we consider the functions F» and g; represented by (14)
and (15). As follows from Appendix A in [13], the function

Vn(x)—/K(po)<pM0>n6<p0]\Zpl —x) dp  (22)

satisfies

Vé(ﬂﬂi)wiquQWMK({)g\/g?_im?(%) :
Ve m?
S T

T+

(23)

In this section we consider only the case m — 0; then we
have

28
=2

=@

n

V(oo = -2 K(©( 57 )

As we shall see below, with the use of this relation one

can obtain the probabilistic distributions G(p) and AG(p)

from the experimentally measured structure functions.

The same procedure will be applied to get G4(p) and

AG,(p) from the usual parton distributions ¢(z) and
Ag(z), defined by (19) and (20).

Let us remark that in the present stage QCD evolution
is not included into the model. However, this fact does not
represent any restriction for the present purpose: to obtain
information about the distributions of the quarks at some
scale @Q? from the structure functions measured at the same
Q2. The distribution of the gluons is another part of the nu-
cleon picture. But since our present discussion is directed
to the relation between the structure functions and the cor-
responding distributions of the quarks at a given scale, the
gluon distribution is left aside.
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2.1 Momentum distribution
from structure function F5

In accordance with the definition (22), in which the dis-
tribution K (po) is substituted for by G(po), the structure
function (14) can be written in the form

Fy(z) =2*V_q(z). (25)
Then, with the use of (24), one gets
- 1 F2 (l’) !
Gl) =~ ( 2
- 1 2F2(l') / .
_WngQ( T F2(£E) ’
2p 5
xzﬁ, pE\/p_:p07 (26)
which in terms of the quark distributions means
1 (q(x)\ 1
6o =~z (") = o) ~ad' (@) 20

The probability distribution G, measures the number of
quarks of flavor ¢ in the element d3p. Since d®p = 4np?dp,
the distribution measuring the number of quarks in the
element dp/M reads

/
x
Pup) =4 MG, ) =~ (")) = ata) - a4/ (0).
(28)
The probability distribution G,(p) is positive, so the last

relation implies
!
(%) <o.
x

Let us note that the maximum value of the momentum
of the quark iS pmax = M/2, which is a consequence of
the kinematics in the nucleon rest frame, where the single
quark momentum must be compensated by the momentum
of the other partons.

Another quantity that can be obtained is the distribu-
tion of the transversal momentum of the quarks. Obviously
the integral

dn,
dp%

which represents the number of quarks in the element dp?,
can be modified as

dN, p?nax_P%‘
e o / Gy (./pgﬂa%) dpi. (31)
T 0

It follows that the distribution corresponding to the num-
ber of quarks in the element dpt/M reads

(29)

= / Gq(p)d(p3+p3—1p7) d°p, (30)

dN,
\/p?naxfpgr
:47TpTM/ G, (\/p%er%) dp; .
0



3.1

P.Zavada: Priahled do nitra protonu v obraze strukturnich funkci

81

P. Zavada: Parton distribution functions and quark orbital motion

Pgval(P)
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Pq,val(pT)
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0 0.25
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Fig. 1. The quark momentum distributions in the rest frame
of the proton: the p and pr distributions for valence quarks
P, val = Pg — P and sea quarks Py at Q2 = 4 GeV2. Notation:
u, @ is indicated by a solid line, d, d by a dashed line and § by a
dotted line

Then, with the use of (28), one gets the distribution

prznax _P2T 1

P = 3% [ 5 (a(w) (@) dp

2/p + %
i .
In Fig. 1 the distributions (28) and (33) are displayed for
the valence and sea quarks. As input we used the standard
parameterization [28] of the parton distribution functions
q(x) and g(z) (LO at the scale 4 GeV?). The resulting dis-
tributions P, and P; are positive, and this means that the
input distributions ¢ and g satisfy the constraint (29).
Using (27) one can calculate the mean values

1
_ [pGyp)d®p _ M [y 2(q(z) —zq'(x))dz (34)
JGy(p)d®p 2 fol (q(z) —zq'(z))dz

In the case of sea quarks extrapolation of the distribution
functions for x — 0 gives a divergent integral in the de-
nominator, and it follows that (p)sea — 0. For the valence
quarks gya1 = ¢ — ¢ this integral converges and integration
by parts gives

(33)

(P)q

3M fol Zqval(z)dz
4 f()l QVal(x) dz

Calculation of (p)q.va1 gives roughly 0.11 GeV/c for u and
0.083 GeV/c for d quarks. Since G4(p) has rotational sym-
metry, the average transversal momentum can be calcu-
lated to be (pr) =7/4-(p).

<p>q,val = (35)

2.2 Momentum distribution
from structure function g;

In (44) of [13] we proved that

L 1‘2 X
(42 = Y,

y3

(e) = Vi)~ [

x
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where the function Vp is defined by (22) for n =0 and
K(p) = AG(p). In Appendix B it is shown that the last re-
lation can be modified to:

2 L aiy)
V(@) =—|g(@)+2 [ —=dy . (37)
T z Y
Then, in an accordance with (24), we obtain
' 3 2p
Vfl(‘l‘) =-M AG(p)a T = M ) (38)
___ 21 faw) N\

or

86(9) = ez () 2 | 1 20 4y - agi (o))

x

Now we substitute
Aq(z) =2g1(z),

1
0@ +ouo) = [ 2 ay— s @
and next we shall consider the flavors separately. The sec-
ond equality represents the Wanzura—Wilczek relation for
the twist-2 approximation of g, which is valid for the
present approach, as proved in [13]. Now (40) in terms of
the quark distributions reads

_ 1 ' Aq(y) :
AGy(p) = Yy <3Aq(m) + 2/06 — dy—zAd' (z) |,
(42)
or, equivalently, with the use of (39) and (41),
_ 1 (Ag(@)+2A¢r(x)\" 2
AGq(p)——ﬂM?,( . P ow=g7- (49)

Obviously the distribution AG, together with the distribu-
tion (27) allows one to obtain the polarized distributions
G(f as follows:

1

G (p) = 5(Gy(p) = AGy(p)) - (44)

The distributions AG, and qu measure the number of
quarks in the element d3p. They can be replaced, similarly
as the distribution G, in (28), by the distributions AP, and

Pqi7 measuring the number of quarks in the element dp/M:

AP,(p) =3Aq(z) +2 / AqT(y) dy—zAq' (z),  (45)

Pi(p) = 5(a(z) — 2q'())
1
+ (gAq(a:) + ) A(;(y) dy— gAq’($)>
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Obviously the probability distributions should satisfy which, after inserting the result from (56), gives
[AG,(p)] < Gy(p), (47) ' Aq
“ ‘ Afy(z) = Ag(x) +2 / % dy. (59)
which after inserting the results from (43) and (27) implies ¢
This equality together with (55) gives
Ag(z) +2A¢gr(2) ' g(x)\’
x == z )’ (48) Aq(y)
R I T R )
where positivity of the right hand side was required in (29). i Y
Another self-consistency test of the approach is repre- or, equivalently,
sented by the inequality
|Aq(z) +2Ag1(2)| < () - (61)

|Ag(z)| < q(z),

which is proved in Appendix C.

With the use of (17) one can formally calculate the
partial structure functions corresponding to the subsets of
positively and negatively polarized quarks:

(49)

i = [rop( B -o) 42 (s0)
Apparently the following equation holds:
fo@) = £ (@) + £ (@) = q(2), (51)
and one can also define
Afylw) = @)~ fy (@), (52)
or, equivalently,
Af( Mm/AG (p‘)“’l x>%. (53)
Obviously we have
F (@) = 5 () £ Dy (a) (54
and (47) implies
Afy ()| < a(a). (55)

Let us note that ff+ f;- =gq, but ff — f; # Aq in the
sense of (17) and (18). The last inequality is replaced by
equality only in the limit of the IMF approach. The rela-
tion (53) can be written

Afy(x) = aVy-1(z), (56)
where
43
Vi, 1(z M/AG ( Pot P x)—p. (57)
Po
At the same time (37) can be replaced by
1 A
Viro) = 1 (a2 [ S10a4y), (o)

Now, using the input on ¢(z) [28] and Ag(z) [29] (LO at
the scale 4 GeV?) one can calculate the distributions AP,
P, and PjE and the related structure functions A f,, f, and
I i The result is displayed in Fig. 2 and one can observe
the following.

Positivity of the distributions Pq:‘E and f;‘ implies that
the self-consistency tests (47) and (55) and their equiv-
alents (48) and (60) are satisfied with the exception of
a small negative disturbance in G, (P, ) and f, . A pos-
sible reason is that the results of the two different pro-
cedures for fitting ¢(x) and Ag(x) are combined and some
uncertainty is unavoidable.

The mean value of the distribution AG, can be esti-
mated to be

1
(), = APACW A’ _ M fy 2Ag@)dz o
T [ AGe(p)dPp 2 fol Aq(x)dx
20 1
2 x
&: “;3
0 0
0 0.25 0.5 0 0.5 1
__ 10 __ 05
o A
o’ 0 % 0 /
-10 * 0.5 :
0 0.25 0.5 0 0.5 1
10 __ 05
2 x
o W
“ o . X 0
-10 | -0.5 1
0 0.25 0.5 0 0.5
p/M X

Fig. 2. The probability distributions APy, Py, Pq+ and P, of
the u, d, s quarks, and the related structure functions A fy, fq,
f;‘ and f; are represented by the solid, dashed, dash-and-dot
and dotted lines
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The proof of this relation is given in Appendix D. The
numerical calculation gives 0.090 GeV/c for the u and
0.070 GeV /c for the d quarks. These numbers are well com-
parable with those calculated from (35), which correspond
to the valence quarks. Also the shape of the distributions
A f,(z) and zAfy(z) is very similar to that of the va-
lence terms. In other words, the results confirm that the
spin contribution of the quarks comes dominantly from the
valence region.

Due to the input values with Au(z) > 0 and Ad(z) <0
one can expect that P} > P, P; > Pf, ff > f; and
fo = f;. Besides, the curves in the figure show that P~
P; , fo and f;' are close to zero, at least in the valence
region.

3 Intrinsic quark motion
and orbital momentum

The rules of quantum mechanics say that angular mo-
mentum consists of an orbital and a spin part, j =1+
s, and that in the relativistic case the quantities 1 and
s are not conserved separately, but only the total an-
gular momentum j is conserved. This simple fact was
in the context of quarks inside the nucleon pointed out
in [30]. It means that only 52 and j, are well-defined quan-
tum numbers and the corresponding states of the particle
with spin 1/2 are represented by the bispinor spherical
waves [31]

d(p—k)
Pv/2po

Yrjij. (P) =

i~ty/po+m2;, (w) (63)
= ()]

where w=p/p, Il =j+ %, A =2j—1 (I defines the parity)

and
V51 /2w) 1

D15, (W) = — ; l=j—5,
Y 112(w) 2
/Y1) 1
21,5, (w) = o  l=it5-
5z Yigat1/2(w)

The states are normalized by

[ b

The wavefunction (63) is simplified for j = j, =1/2 and
I =0. Taking into account that

1 /3
Yoo = — Yio= — 0
00 = i 10=1 A cosv,

3
87

szjk]l.?z(p) p d(k — k) ’5ll/ (64)

Jz]

Y1 = sin 0 exp(ip) ,
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one gets
VPot+m (é)
cosf
“vbomm (sin&exp(igp))

é(p—k)

wkjljz (p) = pm

(65)

Let us note that j = 1/2 is the minimum angular momen-
tum for a particle with spin 1/2. If one considers the quark

state as a superposition,
/ ajpapdk=1,

then its average spin contribution to the total angular mo-
mentum reads

W= [vEsemas n-3(7 ). o1
After inserting (65) and (66) into (67) one gets

+ (po+m)+ (po—m)(cos?—
(= / ' 16mp2po

1 N 1 2m
== s+5— |dp.
2/apap<3+3po> p

Since j = 1/2, the last relation implies for the orbital mo-
mentum of the quark that

0=5 [ (=)o

This means that for quarks in the state j = j, = 1/2 there
are the following extreme scenarios.

Either one has massive and static quarks (po =m),
which implies that (s) =7 =1/2 and (I) = 0. This is evi-
dent, since without kinetic energy no orbital momentum
can be generated.

But another possibility is that one has massless quarks
(m < po), which implies that (s) =1/6 and (I) =1/3.

Generally, for py > m, one gets 1/3 < (s)/j < 1. In other
words, for the states with pg > m, part of the total angular
momentum j = 1/2 is necessarily generated by the orbital
momentum. This is a consequence of quantum mechanics,
and not a consequence of the particular model. If one as-
sumes the effective mass of the quark to be of the order
of thousandths and the intrinsic momentum to be of the
order of tenths of GeV, which is a quite realistic assump-
tion, then the second scenario is clearly preferred. Further,
the mean kinetic energy corresponding to the superposi-
tion (66) reads

o(p) = / axrsiz. (p) Ak (66)

sin? 0) 4%

(68)

(69)

(Exin) = /a;apEkin dp;  Exin =po—m (70)
and at the same time (69) can be rewritten
1 * Ekin
(ly = B /apap 0 dp. (71)
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It is evident that for fixed j = 1/2 both quantities are al-
most equivalent in the nucleon rest frame: more kinetic
energy generates more orbital momentum and vice versa.

Further, the average spin part (s) of the total angu-
lar momentum j = 1/2 related to a single quark according
to (68) can be compared to the integral

F1=/0 g1(x)dez, (72)

which measures the total quark spin contribution to the
spin of the nucleon. For g; in (15) this integral reads

1 1 2m
= / AG(po) (5 + %) a3p. (73)
The dependence of the integrals (68) and (73) on the intrin-
sic motion is controlled by the same term (1/3 +2m/3py),
which in both cases has its origin in the covariant kine-
matics of the particle with s = 1/2. In fact, the procedures
for the calculation of these integrals are based on the two
different representations of the solutions of the Dirac equa-
tion: plane waves (1) and spherical waves (65). It is appar-
ent that for the scenario of massless quarks (m < pp), due
to the necessary presence of the orbital motion, both num-
bers I'1 and (s) are roughly three times less than for the
scenario of massive and static quarks (m ~ pg). What is the
underlying physics behind the interplay between the spin
and orbital momentum? Actually, speaking about the spin
of the particle represented by the state (1), one should take
into account the following.

The definite projection of the spin in the direction n
is a well-defined quantum number only for the particle at
rest (p =0) or for the particle moving in the direction n,
i.e. p/p = *+n. In these cases we have

s=u'(p, \n)nSu(p, \n) = +1/2. (74)

But in other cases, as shown in Appendix E, only the

inequality

(s) = |u'(p, \n)nZu(p, An)| < 1/2 (75)
is satisfied. Roughly speaking, the result of measuring
the spin of a quark depends on its momentum in the
given reference frame (the rest frame of the nucleon).
This obvious effect acts also in the states that are rep-
resented by the superposition of plane waves (1) with
different momenta p and resulting in (p) =0, but with
(p?) > 0. In [12] we showed that averaging of the spin
projection (75) over the spherical momentum distribution
gives the result equivalent to (73). The state (66) can
also be decomposed into plane waves having a spherical
momentum distribution and the spin mean value given
by (68). The well-defined quantum numbers j = j, = 1/2
imply that the spin reduction due to an increasing intrin-
sic kinetic energy is compensated by an increasing orbital
momentum.

Now, what does the preferred scenario of massless
quarks ((m/pg) < 1) imply for the spin structure of the
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Table 1. Relative integral contributions of the quark spins (5),
orbital momenta (L) and their sum (J) to the total spin of the
nucleon. Results are shown of our calculation (right) and the
prediction of the CQSM model (left)

CQSM Present paper
Q%>=03GeV? Q2=4GeVZ AX=02 AX=03
S [%) 35.0 31.8 20.0 30.0
L [%] 65.0 35.8 40.0 60.0
J (%) 100.0 67.6 60.0 90.0

whole nucleon, and what are the integral quark spin and
orbital contributions to the spin of the nucleon? Obviously,
using some input on the total quark longitudinal polar-
ization AXY, one can estimate the relative quark spin and
orbital contributions to be

1
S—AY, L—=2A%, AE:Z/ Aq(z)dz. (76)
0
q

At the same time our approach can be compared with
the calculation based on the chiral quark soliton model
(CQSM) [24,25], in which a significant role for the or-
bital momentum of the quark is assumed as well. In
Table 1 some results of both models are shown. In spite
of some similarity between the two sets of numbers,
there are substantial differences between both approaches.
Let us mention at least the two that seem to be most
evident.

First, the presence of a significant fraction of the or-
bital momentum in the CQSM apparently follows from
the dynamics inherent in the model. On the other hand,
in our approach the important role of the orbital momen-
tum follows from the kinematics, so it should not be too
sensitive to the details of the inherent dynamics. Actu-
ally the effect takes place in LO when quarks interacting
with the probing photon can be effectively described as
free fermions in states like (66) with a sufficiently low ef-
fective ratio (m/po), which controls the fraction of orbital
momentum (69). Of course, the value of this ratio itself is a
question of the dynamics.

Second, in the CQSM antiquarks are predicted to have
opposite signs for the spin and orbital contributions. In our
approach the two contributions are proportional and have
the same signs regardless of flavor or antiflavor.

A last comment concerns the total angular momentum
of the quarks, J, by which room for the gluon contribu-
tion Jj is defined. Results in Table 1 related to the CQSM
suggest that a higher Q2 implies a greater gluon contri-
bution. Our results suggest that the gluon contribution
can be rather sensitive to the longitudinal polarization: for
AXY ~1/3,0.3 and 0.2 the gluon contribution can repre-
sent ~ 0, 10 and 40%, respectively. So the value empirically
known [25],

AX ~0.2-0.35, (77)

does not exclude any of these possibilities.



3.1 P.Zavada: Pruhled do nitra protonu v obraze strukturnich funkci

85

P. Zavada: Parton distribution functions and quark orbital motion

4 Summary and conclusion

We studied a covariant version of the QPM with spheri-
cally symmetric distributions of the quark momentum in
the rest frame of the nucleon. The main results obtained in
this paper can be summarized as follows.

The relations between the distribution functions ¢(z),
Ag(z) and the corresponding 3D momentum distributions
G;t (p) = G4(p) £ AG4(p) of the quarks are obtained. In
this way the momentum distributions of the positively
and negatively polarized quarks Ggﬁ (p) are calculated from
the experimentally measured structure functions Fs and
g1. At the same time these relations, due to positivity of
the probabilistic distributions G, and szt, imply some in-
equalities for ¢(x) and Ag(x). We proved that these con-
straints, serving as self-consistency tests of the approach,
are satisfied.

Next, we showed that an important role of the or-
bital momentum of the quark emerges as a direct conse-
quence of a covariant description. Since in the relativis-
tic case only the total angular momentum j=1+s is a
well-defined quantum number, there arises some inter-
play between its spin and orbital parts. For the quark
in the state, j, =1/2, as a result of this interplay its
spin part is reduced in favor of the orbital one. The role
of the orbital motion increases with the rate of the in-
trinsic motion of the quark; for (m/py) < 1 its fraction
reaches (l,) =2/6, whereas (s,) =1/6 only. Simultan-
eously this effect is truly reproduced also in the formalism
of structure functions, and in this connection some impli-
cations for the global spin structure of the nucleon were
suggested.
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Appendix A: Structure functions
in the approach
of the infinite momentum frame

The necessary condition for obtaining the equalities (19)
and (20) is the covariant relation

pa:yPaa (Al)

which implies

m=yM, (A.2)

and p = 0 in the rest frame of the nucleon and pt = 0 in the
IMF.

For the calculation of the integrals (5) and (6) in the
IMF approach one can substitute p by yP, and d3p/pg by
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mdp%dy/y. Then, after some algebra the structure func-
tions (4) read

1 d
Fi(z) = §Mw/G(yM)5(y—w)wdp%?y ,

Fy(z) = Ma? / G(yM)5(y—m)7rdpr2r% (A.3)

Since the approximation (A.1l) implies a sharply peaked

distribution at p2 — 0, one can identify
MGq(yM)mdpt =q(y) , (A.4)

and then (19) and (A.3) after integrating are equivalent.

In the same way the equalities (10)—(12) can be modi-
fied. Taking into account that pS — yPS = 0, one obtains

g1(z) = % /AG(yM)é(y—x)ﬂdp%% , g2(z)=0.
(A.5)
If we put
MAG,(yM)rdpt = Aq(y) (A.6)

and take into account (A.2), then it is obvious that (20)
and (A.5) are equivalent.

Appendix B: Proof of (37)

In [13] we proved the relation

V() z 22" m
e 0 ; =— B.1
V() <2+29:) pomo=gp (B
which for m — 0 implies
W) =3 (V@ [ Vawa). @2
0

After inserting Vp from this relation into (36) one gets

n(0) = (sVa+ [ v_1<y>dy)
([ [ 3 [ i)
+% (/x y)d +/ 12/ylV1 dzdy)

(B.3)
The double integrals can be reduced by integration by
parts with the use of

/: o) ( / b<Z>dZ> dy = / (Aly) — Ay,

A'(z) = a(z), (B.4)
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and then (B.3) is simplified:

gl(x):%xV_l(m)—xQ/ L2(y)dy.

y (B.5)

In the next step we extract V_1 from this relation. After the
substitution V(z) = V_1(x)/x, the relation reads

gi(z) 1 / 'V ()
== — — B.
2 5V (@) o dy, (B.6)
which implies the differential equation for V(z):
1o V() _ (gi(2)\
§V () + — = ( ol B (B.7)
The corresponding homogeneous equation
1, V(x)
- = B.
2V (z)+ - 0 (B.8)
gives the solution
c
Viz)=—, (B.9)
which after inserting into (B.7) gives
YA 1CORY
C'(z) =227 —5~ | - (B.10)
T

After integration one easily gets the relation inverse
to (B.5):

Vst = 2 (o +2 [ 204, ),

which coincides with (37).

(B.11)

Appendix C: Proof of (49)

The relations (17) and (18) imply that the inequality (49)
is satisfied if

m+p1+

= |po+Dp1—

2
po+p1 > L ‘

Po+m

2
Pr ‘ (C.1)
Ppo+m

There are two cases.
First, po+ p1 — p3/(po +m) > 0; then instead of (C.1)
one can write

2

p
o Em , (C.2)

Po+Pp12>po+p1—

which is always satisfied.
Second, pg +p1 — p3/(po +m) < 0; then (C.1) is equiva-
lent to

D
Po+p1 > —po—p1+
Do
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Since

2po 2 po —p1 = 2(po+m) = po—p1
Po+m)(po+p1) > (Po —p1)(po +p1)

( )

=2( )

= 2(po+m)(po+p1) > Pt
2

=2( ) >

+
boTp1 o +m

(C.3) is always satisfied. In this way (C.1) and (49) are
proved.

Appendix D: Proof of (62)

The relation (40) implies

/AG )d3p
<3 (s 2 [ 252

dy — ach'(w)) dzx

(D.1)
and
/ PAG,(p)d®p
1 1
-5 <3qu(w)+2m / AqT(y)dy—x?Aq’(w)) de.
0 x
(D.2)
If one denotes
1 1
]“1‘1:/ Aqg(z)dz, ng/ xAq(x)dx (D.3)
0 0

then integration by parts gives

1,1 1

A
/ / 219 4yqa =1y, / A () de =~ I
0Jax ) 0

(D.4)
and
1 1A 1
/ 21‘/ Mdydac:FéI, / 2> Ad (r)dx = —2I§ .
0 z Y 0
(D.5)
Now, one can easily express the ratio:
[pAG,(p)d°p M I} D6)
JAG(p)d®p — 2 IY '

and in this way (62) is proved.
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Appendix E: Proof of (75)

With the use of the rule
Po-no+no-po=2pn
the term in (75) can be modified as follows:

u! (p, An)nSu(p, An)

1 0 -N0 -po
b
—po- na+2pn))¢
%+m> "
n-po
m- g +I7)n>¢*“' (E.2)

(po+m)?
el
d)*“(n < o >+(2§in2(>j>¢*“
g (s

Since

’¢I\nna¢)\n‘ =1 ) |¢;np0¢)\n’ < p, pn=pcosa«a,

(E.3)
it follows that
1 2 1
t(p, \n)n= )\<—(+p):—.E.4
(o Am)nBu(p. wn)| < 5 (mot L) =0 (B
Obviously
|U’T (p7 )‘n)nEu(pa )\1’1)' =3 (E5)

only for p/p=+mnorp=0.
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3.2 Nepolarizované strukturni funkce

Nejprve porovname nepolarizované funkce, které vyplyvaji z nekovariantni a kovari-

antni formulace QPM. Vyjdeme pritom z nasledujici tabulky:

nekovariantni QPM kovariantni QPM
distribu¢ni funkce q(z) Gy (%)
Maz?y, e2 [G

forma strukturni funkce Fj : z Y, e2q(x) Zae) q(pgo)

) <p0+p1 _ a:) p

M Po
Callan-Gross: Fy/Fy = 2z ano ano
nepolarizované TMDs ne ano

Nekovariantni formulace

Jednoduchy vztah mezi strukturnimi a distribu¢nimi funkcemi vede k tomu, ze se
oba pojmy Casto zaménuji. Distribuéni funkce ¢(z) reprezentuji pravdépodobnost, ze
podil impulsu daného kvarku na impulsu nukleonu je roven z. Jak ovSsem bylo feceno
v komentari ke vztahu (1.7)), jedna se fakticky o zjednoduseni kinematiky kvarku do
jedné dimenze. Presto se toto zjednoduseni v pripadé analyzy nepolarizovanych struk-
turnich funkci osvédcuje. Velmi dulezitou vlastnost funkce Fy, tzv. ,naruseni skalovani
(viz Cast lze v pripadé nekovariantniho QPM velmi dobre reprodukovat zavede-
nim korekci z pQCD. V tomto priblizeni lze na zakladé znalosti distribu¢nich funkci
q(x, Q?) pri dané skéle Q3 vypocitat jejich priubéh pri jiné hodnoté Q*. Tento postup
dava konzistentni vysledky ve velmi Siroké oblasti z, Q?, v niZ jsou dnes strukturni
funkce F(x, Q%) s vysokou presnosti zméreny. Site této oblasti je patrna z obrazku

Kovariantni formulace

Vychozi distribuéni funkce G,(p)d®p reprezentuje pravdépodobnostni 3D rozdélent
hybnosti kvarkii. Soucasné se predpoklada sféricka symetrie tohoto rozdéleni v klidové
soustavé nukleonu, tento predpoklad ma i hlubsi teoretické zdtvodnéni. V klidové sou-
stavé se tedy pracuje s distribu¢ni funkei{ G, (po)d®p, ktera charakterizuje vnitini pohyb
kvarkt. V libovolné vztazné soustave distribucéni funkce zavisi na invariantni proménné
pP/M, v klidové soustavé se tento vyraz redukuje na py. Od odpovidajici kovariantni
strukturni funkce lze k jejimu nekovariantnimu protéjsku (vlevo) dospét limitnim pre-
chodem, pfi némz je vnitini pohyb kvarkt potlacen. Distribu¢ni a strukturni funkce
v kovariantni verzi rovnéz obecné zavisi na proménné Q?, avsak alespon v souc¢asnosti
algoritmus pro vypocet evoluce (analog k ‘DGLAP evolution equations’) neméame k dis-
pozici. Za prednosti kovariantniho pristupu pro nepolarizované funkce lze vsak zatim
povazovat:

1) Ze strukturni funkce zméfené v experimentu lze v daném pitiblizeni zrekonstru-
ovat 3D rozdéleni hybnosti kvarki v klidové (nebo jakékoli jiné) referencni soustave.
Ptiznivou okolnosti je pritom skutecnost, ze prislusny integral lze analyticky inverto-
vat [A9], viz Cast 3.1.5.
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2) ‘Transverse momentum dependent parton distributions’ (TMDs) jsou funkce
obsahujici informaci o vnitinim pohybu kvarkd uvnitt nukleonu. Zajem o jejich studium
znacné vzrustd v poslednich nékolika letech. V nasi zcela nedavné praci |[A10], viz Cast
3.5.1, jsme mimo jiné ukazali, ze kovariantni model nabizi pro jejich studium zvlasté
priznivy ramec. Dalsim vysledkem jsou pravidla, kterd ukazuji vztah mezi 1D a 3D
distribu¢nimi funkcemi [A13], viz ¢ast 3.5.4. Na druhé strané nekovariantni model, ve
kterém jsou pri¢né hybnosti kvarki zcela potlaceny, stézi mize byt vhodnym ramcem
pro studium TMDs.

3) Z formalniho hlediska je tfeba kovariantni pristup vzdy uprednostnit, k jeho
dalsim praktickym prednostem se dostaneme v dalsim pfi diskusi o polarizovanych
funkcich.

Spolecnou vlastnosti kovariantniho i nekovariantniho ptistupu je obecna vazba mezi
strukturnimi funkcemi Fy, Fy vyjadrend relaci Callan-Grosse [A9], viz ¢ast 3.1.5. Tato
relace vSak pro realné strukturni funkce plati jen priblizné, je to disledek zjednoduse-
nych predpokladi QPM. Dtivody pro pouze priblizné splnéni této relace jsou podobné
divodiim naruseni skélovani. Oboji souvisi s tim, ze kvarky pri interakci s fotonem
nejsou volné, ale jejich chovani je ovlivnéno interakci s ostatnimi kvarky prostrednic-

tvim gluoni. AvsSak jako prvni priblizeni QPM funguje velmi dobre.

3.3 Polarizované strukturni funkce

Distribuéni funkce G, = G7 + G, které jsme zavedli pro kovariantni popis nepolari-
zovaného DIS jsou pro polarizovany pripad nahrazeny funkcemi AG, = G(‘; — G, kde
Gflt jsou odpovidajici rozdéleni kvarku s polarizaci + vzhledem k polarizaci protonu.
Pro porovnani s nekovariantnim ptistupem nyni vyjdeme z tabulky

V pripadé nekovariantniho popisu je rovnéz vypracovana metoda pro vypocet evo-
luce Q? v ramci pQCD, viz napf. [49]. Jiz na pocatku této kapitoly jsme se zminili, Ze
nekovariantni model se v pripadé polarizovanych funkci stietava s nékterymi vaznymi
problémy. Jako prvni priklad lze uvést skutecnost, ze vyrazy vychézejici v tomto pribli-
zeni pro strukturni funkci g, nedavaji rozumny smysl. Na druhé strané vyraz, ktery pro
g2 vychézi v kovariantnim pristupu, je zcela korektni a smysluplny. Svédéi o tom i nasle-
dujici pravidla, do nichz tato funkce vstupuje. Wanzura-Wilczekova relace (WW) byla
ptuvodné odvozena v ramci zcela jiného formalismu (OPE). Je podstatné, ze dnes exis-
tujici experimentalni data k obéma strukturnim funkeim gy, go potvrzuji, zZe relace WW
je v ramci stavajicich chyb splnéna. Podobny zavér lze ucinit i o pravidlech Burkhardt-
Cottingham (BC) a Efremov-Leader-Teryaev (ELT). V rdmci kovariantniho modelu lze
odvodit obecné pravidlo momentt pro libovolnou (i neceloc¢iselnou) hodnotu parametru
« pro niz ma integral smysl, predchozi dvé pravidla odpovidaji hodnotam o = 0, 1. Pro
hodnoty a = 2,4, 6, ... relace predstavuje jiz diive znama Wanzura-Wilczekova sumacni
pravidla. Dopliime, Ze uvedend pravidla (poc¢inaje WW) byla v ramci kovariantniho mo-
delu odvozena pro nehmotné kvarky, m — 0, pro hmotné kvarky je struktura pravidel
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nekovariantni QPM kovariantni QPM
distribu¢ni funkce Aq(x) AG, (%)

3 2q € [ AGy(po)
trukturni funk : s e2Aq(x) Pt
strukturni funkce g¢; : 5 2_q €aAq(T X(m+p1+p0+m)

%<& (po]\w}m _ x) %p

_% qengGq(p(])

. Pi—p7/2
strukturni funkce g5 : ne X <p1 + M)
) (po]\-i/-[m _ :E) a}%p
Wanzura-Wilczek
| o)y ne ano
g(x) = —gi(z) + [; =7
Burkhardt-Cottingham
) ne ano
Jo g2(x)dz =0
ELT
_ ne ano
fO X (§g1+g2) dr =10
obecné «
Lol ne ano
Jox (THQHZ%) dx =0
polarizované TMDs ne ano
pripousti orbitalni moment ne ano
Tabulka 3.1:

vvvvvv

vodit bez predpokladu o hmotnosti kvarku, v tomto smyslu ma toto pravidlo ,,silnéjsi“
povahu.

Dalsi prednosti kovariantniho pristupu je moznost opét do schématu prirozené za-
hrnout TMDs. Pritom zde plati pfesné totéz, co bylo feceno v bodé 2) na konci pred-
choziho paragrafu [3.2]

3.4 Orbitalni moment kvarkt a spin protonu

Tato ¢ast je komentarem k nasemu studiu otézky orbitalntho momentu v ¢lanku |A9],
viz ¢ast 3.1.5. Jde o téma, kterému je v souvislosti se spinovou strukturou protonu vé-
novana v soucasnosti znacna pozornost. Riizné pristupy k otézce orbitalniho momentu
kvarku jsou diskutovany napiiklad v pracech [38]— [48]. Obecné kvarky ke spinu nuk-
leonu prispivaji svym celkovym thlovym momentem j, ktery se sklada z orbitalniho
momentu a spinu kvarku, j =14 s. Pred diskusi o skladani spinii kvarkt je vhodné si
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pripomenout podobnou, ale pritom jednodussi a znaméjsi situaci se skladanim spint a
orbitalnich momenti elektroni v atomovém obalu nebo nukleontt v atomovém jadre.
Zduraznéme na tomto misté, ze orbitalni moment v nasi diskusi je vzdy vztazen ke kli-
dové soustavé odpovidajiciho objektu: atom, jadro, nukleon. V této soustavé srovnejme
uvedené urovneé:

a) atomovy obal — elektrony

Elektrony v jednotlivych slupkach maji presné definovany spin i orbitalni moment.
Stav kazdého atomu se vyjadiuje symbolem 7L ;, kde S, L, J jsou vysledné hodnoty
spinu, orbitalniho momentu a celkového tthlového momentu dané skladanim odpovi-
dajicich hodnot jednotlivych elektroni. Naptiklad atom Cl v zdkladnim stavu je cha-
rakterizovan symbolem 2P3/2 (namisto L = 1,2,3... se uziva konvence L = S, P, D...).
Hodnoty v symbolu lze pfesné odvodit z poctu elektront daného atomu, kterymi se
postupné zapliuji slupky v zdkladnim stavu, viz on-line tabulku [18]. Poznamenejme
soucasné, ze elektrony v atomech lze v rozumné aproximaci popsat nerelativisticky.
ProtoZe rozmér atomu je v fadu 1071° m, relace neurcitosti implikuje hybnost elek-
tronu v fadu 1072 MeV, coz znamend odpovidajici rychlost 3 ~ 0.002.

b) atomové jadro — nukleony

Stav atomového jadra se standardné vyjadruje symbolem J”, kde J je celkovy
thlovy moment jadra a m = £ je odpovidajici parita. Vysledny moment J predstavuje
spin jadra. Napiiklad zakladni stav stabilnfho izotopu O je 5/2", viz interaktivni
tabulku [24]. Z rozméru jadra v ¥adu 107 m lIze odvodit hybnost fddu 10> MeV a
odpovidajici rychlost 3 ~ 0.1.

c) nukleon — kvarky

Oblast pohybu kvarkti v nukleonu je také omezena rozmérem 107 m, jejich hyb-
nost je proto rovnéz fadu 102 MeV. I kdyZ se jednd o hruby odhad, poznamenejme,
ze tato velikost hybnosti velmi dobfe souhlasi i s vysledky analyz strukturnich funkeci
nukleonti provedenych v rameci nékterych modelovych pristupti. Déle, prijmeme-li pred-
poklad, ze hmotnosti kvarkii jsou malé ve srovnani s jejich energii, kterou se na celkové
energii nukleonu podileji (tzv. current quark masses v fadu nékolika MeV tento pred-
poklad splnuji), pak je evidentni, ze vnitini pohyb kvarkt mé relativisticky rozmeér,
£ — 1. Pripomenme nyni, ze v relativistickém pripadé jsou kvantové-mechanicka pra-
vidla pro kombinaci spinu a orbitalnitho momentu odlisna od pravidel platicich v nere-
lativistickych podminkach. V relativistickych podminkéch totiz plati, ze zachovavajici
se veli¢inou je pouze celkovy thlovy moment j =1+ s a nikoliv jeho orbitalni a spi-
nova Cast oddélené, jak tomu je napr. v pripadé elektronii v poli jadra. Jinymi slovy,
piipustné jsou pouze vlastni stavy operatort j2 a j., které jsou reprezentovany sféric-
kymi bispinory. Tato skute¢nost ma velmi dulezité duisledky. Lze je ilustrovat na stavu
kvarku j = j, = 1/2, pro néjz plati:

o= s + {1 =,

t.j. 1 kdyz dany stav neni vlastnim stavem operatorti spinové a orbitalni projekce,

(3.2)
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soucet jejich stFednich hodnot musi dat 1/2. Podrobnéjsi analyza této ,souhry* ukazuje,

ze rozdéleni hybnosti je v tomto stavu sféricky symetrické, primy vypocet pak vede

(s,) = ;/a;ap (; + 2m> ap, (3.3)

v némz se integruje pres absolutni hybnosti kvarku (a, je amplituda pravdépodobnosti

k integralu

stavu s p = |p| a j = j. = 1/2). Z tohoto vyrazu plyne, Ze (s,) < 1/2. Rovnost
nastane pro stav, kdy vnittni pohyb je zcela potlacen, t.j. kdy se jedné o nerelativisticky
pripad a plati s, = 1/2, [, = 0. Miru vnitfnitho pohybu lze charakterizovat napt.
strednimi hodnotami kinetické energie Fj;, = (po — m), v nasem pripadé je vyhodné
uzit bezrozmérny faktor u = (m/py) = <m> V limité nehmotnych kvarku ze
vztahu dostaneme (s,) = 1/6, t.j. pouze tretinu klidové hodnoty. Mezni hodnoty

spinové a odpovidajici orbitalni projekce zavisejici na p shrnuje tabulka:

L 1 2p=10
0 | <)< |1/3
1/2 | > (s.) > | 1/6

a obecné plati

(L) = 211;2‘; (5. (3.4)

Tento vztah plati i v obecnéjsim piipadé, kdyz dany stav j = 1/2 je soucasné vlastnim
stavem projekce do jiného sméru nez osy z. Efekt tedy spoc¢iva v tom, ze (relativisticky)
vnitini pohyb redukuje prispévek spinu a soucasné generuje orbitdlni moment. Vztah
tak reprezentuje souhru veli¢iny z prostoru vnitinich symetrii s velicinou odrazejici
symetrii v ¢asoprostoru.

Tento efekt by se mél projevit pri analyze strukturni funkce g;, jejimz cilem je
stanoveni prispévku kvarku k celkovému spinu protonu. Na zakladé naseho studia lze
v tomto kontextu uvést nasledujici.

1) Spinovy prispévek kvarki

Prispévek spinti kvarki ke spinu protonu lze stanovit z integralu

I = /01 g1(z)dx, (3.5)

ktery lze urc¢it z experimentalné zmérené funkce g,. V kovariantni verzi QPM tento

integral vede k vyrazu

1 1 2m
0=y 800 (S 450 ) AGH) =S dAG ). (0

jehoz hodnota rovnéz zavisi na pu:
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Obé veli¢iny (s,) a I'; jsou méritkem (projekce) spinu kvarki v protonu, prvni se vzta-
huje k jednotlivému kvarku, druhé k souboru kvarkt v protonu. Vysledek, ze obé tyto
veli¢iny jsou v relativistickém piipadé (1 — 0) redukovény stejné, na jednu tretinu
své nerelativistické hodnoty (u — 1), je potvrzenim spravnosti nasich vypoctu. Jde
o vypocty provedené v ramci odlisSnych formalismt, které vsak maji spoleény zaklad
v relativistické, kovariantni kinematice, v jejimz ramci lze korektné zachazet s obéma
veli¢inami — se spinem a orbitalnim momentem c¢astic. Do integralu I'; vstupuji kvar-
kové distribu¢ni funkce s vahami danymi kvadraty odpovidajicich naboj, nicméné
s pouzitim dalsich metod (standard QCD analysis) lze z hodnot I'y stanovit absolutni
spinovy prispévek kvarkia AX.

2) Srovndni s experimentem

Bylo by prirozené ocekavat, ze spin protonu bude vyslednici spintu kvarki, podobné
jako je jeho naboj souc¢tem naboji kvarkti. Tomuto ocekavani by odpovidala hodnota
AY ~ 1. Znaé¢né prekvapeni nastalo, kdyz experiment EMC (jednalo se o tentyz tym,
kterym byl nékolik let predtim objeven EMC efekt) naméril integral I'y, z kterého
vyplyvalo, ze AX je podstatné mensi [50]. Malé hodnoty I'; a AX byly jednoznacné
potvrzeny i v fadé experimentt, které nasledovaly a davaly vysledky v rozmezi AY ~
0.2 — 0.35. Tyto vysledky byly v nedavné dobé podstatné zpresnény v experimentech
HERMES a COMPASS:

AY experiment
0.30 £ 0.010(stat.) = 0.02(evol.) COMPASS [51]
0.33 £ 0.025(exp.) + 0.011(theo.) + 0.028(evol.) | HERMES [52]

Tyto hodnoty znamenaji, ze spiny kvarkt generuji pouze zhruba jednu tfetinu spinu
protonu. Odkud se vsak bere ta vétsi zbyvajici ¢ast spinu protonu, (1 — AX)? Pro
vysvétleni byla navrzena rada hypotéz, zde uvedme alespon dvé, které lze v souc¢asnosti
povazovat za nejpravdépodobnéjsi.

Jednou z nich je prispévek gluoni. Vime totiz, ze proton kromé kvarki obsahuje
i gluony o nichz je zndmo, Ze mohou byt zodpovédné za zhruba polovinu hmotnosti
protonu, pro¢ by srovnatelnou mérou nemohly prispivat i k jeho spinu? Takova moznost
by méla silnou podporu i v ramci pQCD [55]— [57]. Experimentélné lze polarizaci
gluont riznymi metodami rovnéz testovat, je vsak tfeba konstatovat, ze existujici data
naznacuji gluonovy prispévek spise maly [53,[54]. Z existujicich dat na obrazku
fakticky neni ani zfejmo, jaké znaménko by gluonovy prispévek mél mit.

Druhou, v soucasnosti zvlasté sledovanou alternativou pro doplnéni spinu kvarkt
je korektni zapocteni jejich orbitdlntho momentu. Veliciny I'y a AX jsou méfitkem

sumarni projekce spint kvarkii v protonu, nicméné kvarky ke spinu protonu prispivaji
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Obrazek 3.1: Polarizace gluoni zmérend v ruznych experimentech, obrazek je prevzat
z nedavné prace experimentu COMPASS [53].

svym celkovym thlovym momentem, tj. nejen spinem ale i orbitalnim momentem. Jak
velky miize byt celkovy orbitalni prispévek?

V ramci nekovariantniho QPM odpovéd nelze hledat predevsim z téchto diavodi:

i) Jak jsme se jiz zminili v paragrafu [3.2] v nekovariantnim QPM je kinematika
kvarki redukovana do jedné dimenze, v niz lze stézi korektné definovat operator orbi-
talntho momentu.

ii) ProtoZe nase ivaha se tyka orbitalntho momentu, ktery prispiva ke spinu protonu,
musi byt tento orbitalni moment vztazen ke klidovému systému protonu. To je ovsem
pozadavek opét tézko slucitelny s nekovariantnim QPM, jehoz filosofie je neoddélitelna
od ‘infinite momentum frame’.

V kovariantnim QPM tyto potize nenastavaji. Celkovy prispévek kvarki se sklada

ze spinové a orbitalni ¢asti

1
Jy = §A2 + L, (3.7)
kde pro celkovy orbitalni moment plati tatdz uméra (3.4) jako pro jednotlivé kvarky
1—p
= AY. 3.8
1+ 2u (38)

Vezmeme-li v ivahu, Ze spin protonu je tvoren celkovymi thlovymi momenty kvarki a

gluonii, potom plati

1
Jq‘l—Jg - 5, (39)
coz po dosazeni ze vztahi (3.7) a (3.8)) dava podminku konzistence
AY +2J, = 1, (3.10)

14+ 2p
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z niz plyne vztah mezi celkovym prispévkem gluonti a spinovym prispévkem kvarki,

ktery zahrnuje vsechny mozné scénare pohybu kvarki mezi nerelativistickym (p = 1)

J,==(1-AY) (3.11)

N[ —

a relativistickym pripadem (p = 0)

(1-3A%). (3.12)

N | —

Jg =

Ve druhém piipadé jsou slucitelné i hodnoty AX = 1/3 a J, = 0, které nejsou v rozporu

s experimentalnimi daty prezentovanymi v tabulce a na obrazku vyse.

3.5 Dalsi predikce a variace kovariantniho QPM

Dosavadni uvahy se tykaly modelu, jehoz konstrukce byla zalozena pouze na poza-
davcich relativistické kovariance a sférické symetrie nukleonu. Jsou to velmi obecné
pozadavky, jejichz platnost lze stézi zpochybnovat a vazné je proto treba brat i jejich
disledky, naptiklad vztahy mezi funkcemi ¢g; a go nebo i vyznamnou roli orbitalniho
momentu. V tomto ramci lze naptiklad ze strukturnich funkei uréit rozdéleni hybnosti
kvarki v klidovém systému protonu [A9], viz ¢ast 3.1.5. A tyto nase vysledky (pro
valentni kvarky) nejsou v rozporu ani s odhadem v bodé ¢) paragrafu , ale ani s pre-
dikcemi ziskanymi v ramci ruznych variant statistického modelu nukleonu [58]— [60].

Detailnéjsi obraz o vnitinim pohybu kvarkl je zprostredkovan distribu¢nimi funk-
cemi, které poskytuji 3D obrazy rozdéleni hybnosti kvarki, jde o jiz zminované transverse
momentum dependent parton distributions — TMDs, kterymi jsme se zabyvali v nasich
zcela nedédvnych pracech [A10,/A13], viz ¢asti 3.5.1, 3.5.4.

Do obecné modelové konstrukce lze vsak vkladat i dalsi predpoklady, které mohou
vést k dalsim vztahtim mezi strukturnimi a distribu¢nimi funkcemi. Naptiklad s vy-
uzitim predpokladu o symetrii SU(6) jsme ziskali vztahy mezi polarizovanymi struk-
turnimi funkcemi gy, go a nepolarizovanymi distribu¢nimi funkcemi valentnich kvarkt
Qvar(z) [A8], viz ¢ast 3.1.4. Takto ziskané funkce g;, go velmi dobfe souhlasi i s expe-
rimentalnimi daty. Shoda je zajimava a dilezita predevsim tim, Ze nas vypocet prove-
deny v limité nehmotnych kvarki neobsahuje zadné volné parametry, vychazi pouze ze
znalosti nepolarizovanych distribu¢nich funkei a z predpokladu symetrie SU(6), ktery
definuje relativni prispévky kvarka u a d k celkovému spinu. Jiné dodatec¢né predpo-
klady umoznily do modelu zahrnout dal$i distribuéni funkce: transversity [A11], viz
cast 3.5.2, pretzelosity [A12], viz ¢ast 3.5.3 a nékteré dalsi typy TMDs. S dalsimi dis-
tribu¢nimi funkcemi se objevuji i dalsi vztahy a pravidla, ktera naptiklad umoznuji
odhadnout nékteré dosud nezmérené typy distribuc¢nich funkei na zakladé jiz znamych.
V tom asi spociva i hlavni potencial navrzeného modelu.
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I. INTRODUCTION

Studies of hard scattering processes such as inclusive
deep-inelastic lepton-nucleon scattering (DIS) have given
rise to a good understanding of parton distribution func-
tions, which tell us how the parton momenta parallel to the
nucleon momentum are distributed. One way to gain in-
sights into the partonic quark-gluon substructure of the
nucleon beyond this one-dimensional picture is to consider
transverse momentum dependent (‘unintegrated’) parton
distributions (TMDs) [1]. These objects can be accessed
by observing transverse momenta of, e.g., hadrons pro-
duced in semi-inclusive DIS (SIDIS) or dileptons produced
in the Drell-Yan process [2-10] thanks to factorization
[11-14]. Much theoretical progress was made [15-26],
and first data [27-45] give rise to phenomenological in-
sights [46—62].

Nevertheless, presently model studies [63—78] play an
important role. It is worth to recall that important insights
concerning the very existence [9] or universality [16] of
effects were made on the basis of model studies, see [79]
for a review. Moreover, model results help to sharpen our
physical intuition on these novel objects, and can be used
to make estimates for planned experiments. Another aspect
is that, thanks to the far simpler dynamics as compared to
QCD, one may find relations among the different TMDs in
some [63—67] though not all [68,69] models. As all TMDs
are a priori independent structures, any such model rela-
tions among TMDs are not expected to hold in QCD.

It is interesting to ask, however, whether such relations
could nevertheless be satisfied in nature at least approxi-
mately. Recalling that the nucleon is characterized by 8
leading-twist [7] and 16 subleading-twist [23] TMDs, such
approximate relations could be valuable, for the interpre-
tation of first data, or for estimates for new experiments
[25].

In order to judge to which extent a particular model
relation among TMDs might be respected by nature, till
we know the answer from experiment, it is helpful to
understand under which general conditions in a model

1550-7998,/2009 /80(1)/014021(13)
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this relation holds. For example, suppose a model relation
relies on the SU(6) spin-flavor symmetry of the nucleon
wave-function. We know from experiment that the SU(6)
symmetry concept is useful—within certain limitations
[78,80]. This implies that model relations based on SU(6)
symmetry are respected in nature, if at all, at best within
similar limitations. It happens that all model relations
among TMDs observed so far have been found in models
based on SU(6) symmetry [63-65].

The purpose of this work is to study TMDs in the
covariant model of the nucleon proposed in Ref. [81]
which makes no use of SU(6) spin-flavor symmetry.
Some of the results presented here were discussed previ-
ously in [66]. In this model the intrinsic motion of partons
inside the nucleon is described in terms of a covariant
momentum distribution. The model was applied to the
study of unpolarized and polarized parton distribution
functions accessible in DIS f{(x), g%(x) and g%(x), and
extended to compute the transversity distribution h9(x)
[82-86].

In this work we generalize the approach [81-86] to the
description of TMDs. In particular, we focus on the so-
called T-even, leading-twist TMDs, and pay particular
attention to the demonstration of the consistency of the
approach. We shall see that certain model relations among
TMDs hold even without invoking SU(6) symmetry. For
earlier studies of the parton transverse momenta contribu-
tion to the transverse spin in the parton model framework
we refer to [87,88].

This note is organized as follows. In Sec. II we briefly
introduce TMDs. In Sec. III we introduce the model, and
review previous works. In Sec. IV we generalize the ap-
proach to the description of TMDs, and in Sec. V we
demonstrate its consistency. In Sec. VI we discuss the
model relations among the polarized 7T-even TMDs. In
Sec. VII we apply the approach to a study of TMDs in
the nonrelativistic limit, before we summarize and con-
clude in Sec. VIII. The Appendices contain details of the
calculations, and supplementary results.

© 2009 The American Physical Society
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II. TMDS

In this Section we introduce and define briefly TMDs.
With the use of light-cone coordinates, a™ = (a® =
a')/+/2, TMDs are defined in terms of light-front correla-
tors as

dz” d*%; oiv
@en?
X (D) INP, S|+, p= =+ (1)

In SIDIS the singled-out space-direction is along the mo-
mentum of the hard virtual photon g* = (¢°, ¢!, 0, 0), and
transverse vectors like py are perpendicular to it. The path
of the Wilson-link "W depends on the process [10,19]. In
the nucleon rest frame the polarization vector is S =
(0, —S,, S7) with S + §2 = 1. The negative sign in front
of §; is because by convention [24] the nucleon has
positive helicity, i.e. §; > 0, if it moves towards the virtual
photon.

The information content of the correlator (1) is summa-
rized by eight leading-twist TMDs [7], that can be pro-
jected out from the correlator (1) as follows (for
convenience we will often suppress flavor indices)

d(x, pr)ij = (N(P, S)|l/’](0)w(0 z, path)

8PT

% ulyt bl pr)l = fr — LTl ()

1 . pr S
—tuly T ysd(x, pr)l = S.81 + Pr Tg1lr 3)
2 My

tr[za’”yﬁ-qb(x pr)] = Shhy + SL Ph hl

N (PTPT éﬁzrajk)sr h
M2

pT hJ. (4)

where the space-indices j, k refer to the plane transverse
with respect to the light-cone, and €% = —g? =1 and
zero else (which is consistent with £°123 = 1). Integrating
out transverse momenta in the correlator (1) leads to the
three ‘usual’ parton distributions known from collinear
kinematics j(x) = [d?prjé(x, p}) with j=f, g,
[89,90]. Dlrac structures other than that in Egs. (2)— (4)
lead to subleading-twist terms [23,24].

III. THE COVARIANT MODEL OF THE NUCLEON,
AND ITS APPLICABILITY

In this section we first briefly introduce the model, and
sketch the calculation of the ‘collinear’ parton distribution
functions done so far, namely f{(x), g{(x), g%(x) and A{(x).
Then we discuss the applicability of the approach to the
calculation of TMDs which will be done in Sec. I'V.

PHYSICAL REVIEW D 80, 014021 (2009)

The starting point for the calculation of the chirally even
functions accessible in DIS, f¢(x), g{(x), and g$(x) [81-
83], is the hadronic tensor. The latter is evaluated in the
Bjorken-limit, i.e. in the limit that the four-momentum
transfer g from the lepton beam to the nucleon with
momentum P is such that Q> = —¢? and Pq — oo while
x = Q%/(2Pgq) is fixed. In the model it is assumed that
unpolarized DIS can be described as the incoherent sum of
the scattering of electrons off noninteracting quarks, whose
momentum distributions inside the nucleon are given in
terms of the scalar function G(pP/M). Here p and P are
the momenta of the quark and nucleon, and M is the
nucleon mass. Though all expressions can always be for-
mulated in a manifestly covariant way, it is convenient to
work in the nucleon rest-frame, where the momentum

distribution becomes G(p°) with p® = /p*> + m>. Here
m denotes the quark mass. Clearly, the distribution of the
quark momenta in the nucleon rest frame is rotationally
symmetric.

Applying these ideas to the description of the symmetric
part of the hadronic tensor has shown that in the model the
Callan-Gross relation among the unpolarized structure
functions holds exactly, and the unpolarized parton distri-
bution function is given by [81] (notice that G(p”) depends
on flavor, which we suppress for brevity)

1
s = [P ame(T T =) - o
p¥ M

Next we review the calculation of g7(x) and g%(x)
appearing in the antisymmetric part of the hadronic tensor.
For a single quark the latter would be given by Wﬁg =
méqp,,q"*w”, where g# is the momentum transfer from
the electron in DIS, and w” denotes the polarization vector
of the quark. In the model—assuming the covariant distri-
bution of polarized quarks to be given by H(pP/M)—the
antisymmetric part of the hadronic tensor of the nucleon is
given by

d3
Was = fpprH(pP/M)é((p + g — m)Wyd

Bj m . d3p 0 (po_pl )
Bm TP gps(E—L — ).
oot [ SE GO~ 5w ©

The second expression in (6) is given in the nucleon rest
frame choosing ¢* = (¢° ¢',0,0) and holds in the
Bjorken limit (more precisely: here and in the following
for the steps marked by ‘Bj’ the condition Q% > 4M?x? is
essential).

Notice that the covariant distribution of polarized quarks
can be expressed as H(p®) = G*(p®) — G~ (p), where
the indices ( = ) refer to the respective quark polarizations
which are parallel ( + ) or antiparallel ( — ) to the nucleon
spin. In this notation the covariant distribution of unpolar-
ized quarks in (5) is G(p°) = G*(p°) + G (pY).
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The most general expression for the covariant quark
polarization vector [82] is given by

pS

P puggu M PS
pP + mM

mpP-l-mMp

yn

wH N

(7

where $* denotes the nucleon polarization vector given in
the nucleon rest frame by S* = (0, S) with |S| = 1. The
evaluation of Eqs. (6) and (7) and comparison to the
general Lorentz-decomposition of WQB, namely

SV
Wﬁﬂ = Eaﬁuqu<Fqgl +

(Pq)S” — (Sq)P”

) ®

yield the following results for g7(x) and g%(x) = g%(x) +
gg(x) [82,83]

= [2Hos (T )
« [po ) —pOI’TZTm} ©)
1(x) = cf_pH( 0)6u—x m+ﬁ7%.
et = [ FHwn( = ) m
(10)

In the model the Burkhardt-Cottingham sum rule [91] is
satisfied. When neglecting terms proportional to m also the
Efremov-Leader-Teryaev sum rule [92] holds, while g#(x)
is given by the Wandzura-Wilczek (WW) approximation
(93]

g W [tdy 4 m
g™ [Tgmro(f) v
as was proven in [82,83]. Notice that in QCD what is
neglected are not only mass terms but also pure twist-3
terms [93]. That in the model such pure twist-3 (‘interac-
tion dependent’) terms in g;(x) are absent, is consistent
because in our approach the quarks are assumed to be free.
(We remark that the approximation g#(x) = f! % gl(y) is
supported by data [94] and theoretical approaches [95].
Further discussions of WW- and WW-type approximations
in related and other contexts can be found in
Refs. [25,26,96].)

The chirally odd transversity distribution function can-
not be accessed through the hadronic tensor and DIS. For
theoretical purposes, however, one may consider the aux-
iliary polarized process described by the interference of a
vector and a scalar current. On the quark level this inter-
ference is described by Tf = €44, pPq*w” from which
one obtains for the nucleon—in analogy to the procedure in
Eq. (6)—the following expression

PHYSICAL REVIEW D 80, 014021 (2009)

d*p
= H(pP/M)8((p + q)* — m))T4
o= [ HOP/B(p + aP = )
B | &’p p’—p' ,
=EEQBAVqA[WH(pO)3< _X)PBW .
(12)

The general Lorentz-decomposition in this case reads (j =
2, 3 is a ‘transverse index’ with respect to ¢ and P)

OMT €% = Sih(x) (13)

one obtains after evaluating (12) with (7) the following
result for the transversity distribution function [84]

me = [ ";g’H@O)a(”Oﬂ;”l )

(14)

We remark that in Egs. (9), (10), and (14) we did not
distinguish momentum distributions in differently polar-
ized nucleons. In general one might suspect the covariant
distributions to be different. In QCD, if nothing else, differ-
ent evolution properties clearly distinguish chirally even vs
odd, and twist-2 vs twist-3 distribution functions. In the
model, however, it is natural to assume the distributions in
longitudinally and transversely polarized nucleons to be
equal. In order to understand that this assumption is indeed
natural, we recall that the approach is covariant. Therefore
one may go to the nucleon rest frame, where it certainly
makes no difference whether the quarks in the nucleon are
polarized longitudinally or transversely (with respect to the
space component of the four-vector ¢ in DIS or SIDIS).'
Since in this model the quarks are noninteracting, it does
not matter how they are polarized—because, for example,
there are also no spin-orbit- or spin-spin-interactions.
(Sec. VI A will show that the covariant distribution in
various polarized TMDs must be equal, in order to comply
with QCD.)

However, this by no means implies that the parton dis-
tributions describing longitudinally and transversely polar-
ized quarks, g;(x) and A, (x), are equal. They are, in fact,
rather different even if described in terms of the same
covariant momentum distribution H(p®) [84]. By introduc-
ing adequate normalizations (as dictated, e.g., by SU(6)
symmetry) one could furthermore relate the polarized co-
variant distribution function H(p") to the unpolarized one
G(p°). This is, however, a severe restriction and simplifi-
cation of the model, which we do not need in general.

When extending the approach below to the description
of TMDs it is important to keep in mind the following
point. The QCD definition of a parton distribution function

'Since ¢* is spacelike ¢ < 0, its space-component § is non-
zero in any frame, and always provides an axis for the quantiza-
tion of the nucleon spin.
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includes a Wilson line, which in DIS describes the inter-
action of the struck nucleon with the target remnant. It is
possible to find a gauge in which the Wilson line drops out,
and the partons seem ‘noninteracting’—an idea eventually
underlying the parton model in general, and the approach
of Refs. [82-86] in particular. When dealing with TMDs,
however, the Wilson line cannot be ‘gauged away’
[9,10,19].

In the present framework we have no tool to include the
effects of the Wilson line, and therefore the description of
the so-called ’naively T-odd’ parton distribution functions,
the Sivers function f7; and the Boer-Mulders function /i,
is beyond the scope of the approach. These TMDs crucially
rely on the initial- and final-state-interactions encoded in
the Wilson line [9,10], and are expected to be absent in our
framework.

Finally, we remark that the model is ‘opposite’ to the
Gaussian ansatz for TMDs in the following sense. In the
Gaussian ansatz one assumes the extreme situation that
distribution of longitudinal momentum (i.e. x-dependence)
and the distribution of p; are decoupled. For example, one
has f(x, p7) = f1(x) exp(—p3/{p7))/(m(p})). It is even
possible to “switch off” pp-effects: in the limit (p3) — 0
one has f,(x, p3) = f1(x)8?(p7). In contrast to this in the
present model the longitudinal and transverse motions are
coupled “maximally”. It is not possible to ““switch off”
pr-effects. As a consequence one has, e.g., interesting
implications for the quark orbital motion [86].

IV. EXTENSION OF THE APPROACH TO TMDS

In this section we extend the approach to the description
of TMDs. Since none of the new TMDs in Eqgs. (2)—(4) is
accessible directly via the hadronic tensor in DIS or via the
auxiliary process explored for the calculation of hY(x), we
need to establish a more general relation in the model to the
correlators (2)—(4). For that we observe that the model
expressions for the antisymmetric part of the hadronic
tensor (6) or the auxiliary current (12) include integration
over d*p = dp'd®pr with d* p; = dp,dps. In the follow-
ing we will explore the consequences of what happens if
one does not integrate out transverse momenta in these
expressions, and demonstrate the consistency of this
approach.

The ‘integrated” symmetric part of the hadronic tensor,
to which f7 is related, was studied in Ref. [81]. The study
of its ‘unintegrated’ version would give model results for

f9 and the T-odd fi;7, as revealed by the correlator in
Eq. (2). However, the description of the Sivers function is
beyond the scope of our approach, see Sec. III, and we
therefore start with the more interesting case of the corre-
lator (2) which describes g{(x, py) and the T-even TMD
g1r(x, pr). (We shall come back to f7 at the end of the next
section.)

In order to access the information contained in the
correlator (3) we consider the transverse space components

PHYSICAL REVIEW D 80, 014021 (2009)

(j, k = 2, 3) of the ‘unintegrated’ antisymmetric part of the
hadronic tensor in Eq. (6). We work in the nucleon rest
frame with the nucleon polarization vector as introduced in
the sequence of Eq. (1) and choose g* = (¢°, ¢',0,0).
Then, using (7) we obtain in the Bjorken-limit

.\ Bj dp' P’ —p'
QMW (x, pr) = Ejk[WH(po)(S( A

132
X{=8.(p° = p' = )
{ L(p )4 ]70 +m
_ prSr p° — Pl}
2 p’+ml

(15)

We recognize two contributions in (15), one proportional
to the longitudinal nucleon spin component S; and one
proportional to the projection of the nucleon spin on the
transverse parton momentum. These contributions coin-
cide exactly with the decomposition of the correlator in
Eq. (3). Thus, from the comparison of the coefficients we
obtain

dpl pO _ pl
sl pn) = [ ane(P )

22
Pt
o m] (16)

x[p()_pl_

d 1 0 _ ,1

g1 (x pr) = [p—poH(po)S(—p Mp - X>

0 _ 1

X [M ’70’77%"] (17)

p +m

Notice that there is no arbitrariness concerning an overall

prefactor, because in the integrated case we reproduce

2M W}‘}{(x) = —€;;5.87(x) in agreement with the general

Lorentz-decomposition for the transverse components of

the antisymmetric part of the hadronic tensor. The other

components of Wﬁ,, describe subleading-twist structures,

for example g%(x) in the integrated case, which we do not
consider in this work.

Now we wish to access the information content de-
scribed in the chirally odd correlator (4). For that we
consider the ‘unintegrated’ version of the auxiliary current
T, in Eq. (12). For T,(x, pr) contracted with €/% we
obtain:

1 0_ ,1
IMT,(x, pp)ei = f dLOH(pO)5<u - x)
p M

. . 0 _ 1+m
X S] 0o _ ,1 - S Jp p
{ r(p r') LPT—po+m
S5
_j 9TPT 18
pro+m}' (18)

In order to easier compare to (4) we rewrite the decom-
position of that correlator as often done [6,7] as follows
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| o i P 1
3 tlio/* ysop(x, pr)] = S]T<h? 2]‘;2 h q)
%r—’
hity
_, Pr Py ke +Mh1lr
My M3
Jk
+ 20y (19)

N

where we suppressed the arguments x, p; of the TMDs for
brevity. By comparing the coefficients in Egs. (18) and (19)
we read off the following results:

0 _ ,1
ity o) = [ 05 (P = )it = )

(20)

dn! 0 _ ,1
i pn) = [ mne(P )
1
<[ 5]
p +m

it = [ mna(Z - ]
(22)

ey

hi(x, pr) = 0. (23)

V. CONSISTENCY OF THE APPROACH

It is necessary to demonstrate the consistency of our
approach. For that we remark first that by integrating the
expression for g?(x, py) in Eq. (16) over transverse mo-
menta we recover the model result for g7 (x) derived in [82]
and quoted in Eq. (9). Next, by exploring the connection of
transversity to the functions /;(x, pr) and hi(x, pr) [6,7]

hy(x, pr) = hyp(x, pr) + 2= 2M2 hllT(x Pr)

- [dp—pO]H(PO)5<L
(24)

and integrating over transverse momenta we recover the
correct result for transversity derived in [84] and quoted
above in Eq. (14). This means that the Lorentz-
decomposition of the structure (18) in the model is con-
sistent with the Lorentz-decomposition of the correlator in
Egs. (4) and (19). Since the model is covariant, this is an
expected feature. We finally notice that there is no
polarization-independent term in (18) meaning the absence

PHYSICAL REVIEW D 80, 014021 (2009)

of the Boer-Mulders function—as expected in the present
framework, see Sec. III.

We observe that the results for g7(x, py) and hf(x, pr)
derived here could have been simply ‘guessed’ from the
results for the integrated functions g(x) and h%(x) by
‘skipping’ the integration over d?pr. This is by no means
trivial, because in the respective TMDs there could have
been structures—e.g., of the type F(p°, p')(p3 — p3) with
some function F(p°, p') making the integrals converg-
ing—which would drop out in the expression for the
integrated functions due to rotational symmetry in the
transverse plane. On the other hand, in the present ap-
proach described by a free Hamiltonian (that commutes
with the momentum operator) the model expressions for
TMDs could be written as nucleon expectation values of
certain polynomials of the momentum operator. Then it is
clear that such "multipol-terms’ in TMDs are forbidden by
the Wigner-Eckart theorem. After these considerations we
conclude that the model expression for the unintegrated
unpolarized distribution function is given by

1

1 pr) = f PG 0)6(——x)<p0—p1>.

(25)

As a next important consistency check let us test
whether the model results satisfy positivity constraints,
and for that we need the expression for the unpolarized
distribution function (25), since the inequalities for TMDs
we wish to verify read [15]

W pl = 311G pr) + gie p] 26

G )l = 311G pr) = gls p)] @27)
g1, pr)? + £, pr)?

= PLIR R - i) @8)
i, pr)? + D )

= DL IR P - gl @9

where the ‘unintegrated’ transverse moment of a TMD is
defined as

—’2

1)( pT) M2]1

(x, pr) (30)

Notice that the 7-odd functions f llT(l)q(x, pr) and
hll(l)q(x, pr) are absent in our approach. A direct test of
the inequalities is actually difficult because different co-

variant functions G(p°), H(p®) appear in the TMDs. One
way to proceed is to assume SU(6) spin-flavor symmetry of
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the nucleon wave function. If one assumes SU(6) symme-
try, the inequalities (26)—(29) are manifestly satisfied in our
framework, see Appendix A. If one does not, the positivity
conditions (26)—(29) are ‘translated’ into certain con-
straints among the covariant momentum distributions
G(p°) and H(p"), see Ref. [84], where the p;-integrated
version of (26) known as Soffer bound [97] was discussed
in this way.

We conclude this section with the observation that so far
our approach satisfied all imposed consistency checks.
Further consistency tests will be provided in the next
Section, where we shall see that our approach satisfies
certain exact relations as well as model relations among
different TMDs found also in other relativistic quark
models.

VI. RELATIONS IN THE MODEL AMONG TMDS

It has to be stressed that in QCD all TMDs are indepen-
dent structures, and it is not possible to find exact relations
among them that would allow to express one TMD in terms
of other TMDs. However, especially in models without
gauge-field degrees of freedom [63—-65], it might be pos-
sible to find relations among different (7-even) TMDs.
Such model relations are of interest by themselves, and
might be supported by data within certain ‘model accura-
cies‘. It would be interesting to know the general condi-
tions a quark-model must satisfy in order to fulfill such
relations.

In order to recognize more easily the relations among the
different 7-even TMDs let us introduce the following
compact notation for the measures

dp' G(p°) (po—p‘ )
—_ 1) — X

dp'} =
{dp'} 0w\ M

(3D

dp' H(p®) (p°—p'
n==2" 5 —x). 2
tap'y =% p0+m( - x) (32)

The measure (31) is positive definite, while the sign of the
measure (32) depends on the sign of H(p®). Then the
various TMDs can be written as follows

e pr) = j [P0 + mxM]  (33)
¢1(x pr) = [ {dp (0 + mxM — B3] (34

h{(x, pr) = f{dp'}[(po + m)xM — %ﬁ%]

_ f{dpl}[%(xM + m)2] (35)

gL9(x, pr) = [ {Ap +MGM +m)]  (36)

PHYSICAL REVIEW D 80, 014021 (2009)

sy, pr) = f dp[-MGM +m)]  37)

i (x, pr) = f {dp"}[—M?], (38)

where we remind that p® = 4/p? + p} + m? and p® —

p' =xM due to the delta-function in the measures.
When deriving the second equality in (35) one may make
use of the identity p3 = xM(p° + p') — m? valid due to
the delta function. From the expressions (34)—(38) we can
read off numerous model relations among polarized TMDs,
which we shall discuss in the following.

Notice that none of the relations discussed in the follow-
ing involves the unpolarized parton distribution function.
Such relations are impossible in our approach, simply
because there is in general no way to connect the different
covariant distributions G(p°) and H(p®). If (and only if)
one makes an additional model assumption, namely, as-
sumes the SU(6) spin-flavor symmetry, then we obtain
relations including f9(x, p;) and other TMDs, see
Appendix. B.

A. An exact relation in QCD, and its consistent
realization in the model

Let us first discuss an exact relation which is valid in the
model and which involves g#(x). (Later we shall discuss
also several approximate relations involving this twist-3
parton distribution function.) For that we introduce the
measure {d>p} = {dp'}d*>p; which allows us to rewrite
the model expression (10) as

() = f (& p}[m(po +m) + % 13%} (39)

From Egs. (35), (36), and (39) we find that the following
QCD relation [24] is satisfied consequently in the model

xgf() = g0 + T +xgfe). (40)

=0, here!

This further demonstrates the consistency of our approach,
although g%(x) # 0 in general, because in our model such
pure twist-3 terms (quark-gluon-correlations) are conse-
quently absent. We learn two further important lessons.
First, the relation (40) crucially relies on the fact that g%,

hi(x), giy! are described in terms of the same covariant
distribution function H(p). In other words, to be consis-
tent with QCD, we actually have no choice but must work
with the same covariant distribution function H(p°) for all
polarized functions (c.f. the discussion in Sec. III). Second,
we clearly see that the model parameter m is really to be
identified with the current quark mass in QCD.

Let us remark that in QCD the relation (40) is valid also
in ‘unintegrated version’, i.e. with the TMDs not integrated
over pr. Here we confine ourselves to the ‘integrated

014021-6



3.5 P.Zavada: Priuhled do nitra protonu v obraze strukturnich funkci

102

TRANSVERSE MOMENTUM DEPENDENT DISTRIBUTION ...

relation’ (40), as we have not derived the model expression
for gt(x, py) (though, in view of the experience with g7
and A, presumably it is given by (10) and (39) with
pr-integration omitted and the ‘unintegrated version’ of
(40) is valid, too).

B. Exact relations among leading-twist TMDs in the
model

Next we focus on a class of relations among leading-
twist TMDs which are exact in our approach, and can hold
in models only. By comparing the expressions in Egs. (36)
and (37) we observe the following exact relation in our
model

i« pr) = —hif(x, pr). (41)

This relation was observed previously in the spectator
model of Ref. [63] and the constituent model [65].

Next, by comparing Egs. (34), (35), and (38) we see that
the model results satisfy the relation

L(l)g

g‘l’(x, rr) — h?()ﬁ pr) = hip (42)

(-x’ pT)

This relation was first observed in the bag model [64] and it
is also valid in the spectator model of Ref. [63]. It was
argued [64] that (42) could be valid in a larger class of
relativistic models. It is thus gratifying to observe that
subsequently (42) was confirmed in the relativistic con-
stituent quark model [65] and now also in our approach.
Interestingly, the relation (42) is not supported in the
spectator model version of Ref. [68].

Both quark-model relations, Egs. (41) and (42), are not
supported in models with gauge-field degrees of freedom
[69]. This observation is in line with the expectation that
even if the relations (41) and (42) were valid in QCD at
some scale (which, of course, does not need to be the case)
they would be spoiled at any different scale by evolution
effects that clearly discriminate chirally even and odd
functions.

Finally, from Egs. (20)—-(22) we find the following re-
markable exact relation

1
E[hff(x, pr) P = —hi(x, pp)hif(x pr),  (43)

that was not observed before in literature to best of our
knowledge and connects only chirally odd TMDs—in
contrast to (41) and (42). This nonlinear relation is obeyed
in the spectator model [63]. Combining (41) and (43) we
find

1
E[g# (% pr)P = —hi(x, pr)hif(x pr),  (44)

which again mixes chirally odd and even TMDs (though
the product of two chirally odd objects ‘conserves’
chirality).

From Egs. (34) and (35) we find also relations among the
signs of TMDs, for example:

PHYSICAL REVIEW D 80, 014021 (2009)

sign (h{) = sign(g?), (45)

sign (h]) = —sign(hlqu). (46)

Notice that (46) could be concluded as a corollary from the
result (43). Also from Egs. (34) and (35), or from combin-
ing (45) and (42), we find

|1 (x, pr)l > 1g7(x, pr)l

i.e. the modulus of the transversity distribution function is
larger than that of the helicity distribution function. This
inequality survives integration over py and x, and we
obtain for g% = [dxhi(x) and g4 = [dxgi(x), the tensor
and axial charges, the relation

for pr >0, 47)

lgf > gl (48)

which was also observed in [84], in many other models
[98-100], and in lattice QCD [101].

Although some of these results have been obtained
before in literature, it is remarkable that in our approach
all these relations follow without assuming SU(6) spin-
flavor symmetry.

C. Relations in the model in the chiral limit

From Egs. (35)—(38) one can find further relations by

observing that h{, gﬁf] , hlqu, h1qu are functions of the type
const X (xM + m)" X [{dp'}, which looks ‘so trivial’
only due to the compact notation introduced in Eq. (32).
Recall that m is to be identified with the QCD current quark
mass, see Sec. VIA, whose effects are expected to be
negligible in deeply inelastic reactions. We can formulate
those relations in the chiral limit, and obtain

25 pr) + b pn) = O() (49)
1 m

205 pr) + hif s pr) = O(7) (50)
Lg Lg — o™

i pr) — i) = o(7) 6D

Upon the use of (41) one obtains relations similar to (50)
and (51) but with hi,7 replaced by ( — gi¥).

Remarkably, in the model it is possible to relate the
transverse moments of the chirally odd TMDs h]J‘L" and

h]J‘T" to the chirally even twist-3 parton distribution function
g%(x) as follows

hllL(l)q(x) + xgh(x) = @(%), (52)
W + g0 = o7 (53
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Notice that (52) follows also from combining (40) and (41)

D. Wandzura-Wilczek (type) approximations

We already mentioned the Wandzura-Wilczek approxi-
mation [93] which allows to connect the twist-3 distribu-
tion function g%(x) and the twist-2 distribution function
g1(x), see Eq. (11). In the model this approximation re-
quires the neglect of quark-mass terms. In QCD one has to
neglect in addition pure twist-3 terms.

An important practical application is that Egs. (11) and
(53) allow to express the unknown hllT(l)q(x) in terms of the
well-known g7(x). In [66] we made use of this relation in
order to estimate the transverse moment of pretzelosity,
and used the results for predictions of SSAs in SIDIS.

In a similar way, i.e. upon the neglect of pure twist-3 and

quark-mass terms, one obtains further ‘Wandzura-
Wilczek-type approximations’ [25], namely
Idy
et =~ x [t (54)
x Yy
1 dy
hp(x) = =2 f Fh‘f(y). (55)
X

Both Wandzura-Wilczek-type approximations are valid in
our approach upon the neglect of quark-mass terms. The
validity of (54) follows directly from Egs. (11) and (40).
The proof of the Wandzura-Wilczek-type approximation
(55) is given in App. C.

E. Transverse momentum dependence

The probably most exciting thing about TMDs is, of
course, their pr-dependence. The power of the covariant
approach with rotationally symmetric momentum distribu-
tions of quarks in the nucleon rest frame is based on the
fact that this symmetry ultimately connects the distribu-
tions of transverse and longitudinal momenta. Some excit-
ing consequences of this symmetry in the context of the
spin content were discussed in [86], and a detailed study of
the effects of this symmetry in the context of TMDs is in
preparation.

However, a couple of simple but already interesting
conclusions on the ‘mean transverse momenta’ of TMDs
can be drawn without modelling the covariant momentum
distribution H(p"). Notice that all p,-integrals given be-
low are well-defined in our approach.

Let us introduce the notion of mean transverse momenta
moments of a TMD j; as follows

fdx fdszﬁ%jl(Xy Pr)
fdx dePle(x» rr) '

and the n-th moment p-moment (p = |p|) of the covariant

(P j0) = (56)

PHYSICAL REVIEW D 80, 014021 (2009)

distribution function is defined as follows

W) = [ & pp"H(pY). 57)

Then we obtain the following relations valid in the chiral
limit

2 2
lim(p7. ¢1) = lim(p7, hY) = 3 <<<<pl >>>> 9
2
lim 53, gi!) = lim(pF, i) = 3 <<<1<9L>1>>> >
oy ia 2 (1))
AP ) =3 Ty o

It is instructive to learn that, although g, (x) and /,(x) are
very different in the model [84], their mean transverse
momenta coincide in the chiral limit.

VII. NON-RELATIVISTIC LIMIT

The assumption of a nonrelativistic dynamics of light
quarks in the nucleon is not realistic. Nevertheless certain
conclusions from this limit are very popular—like, for
example, the relation /1;(x) = g;(x) which has often been
used in literature to obtain order of magnitude estimates for
effects of transversity. It is therefore worth to study how
this limit can be formulated in our framework. This will
yield nonrelativistic limit results for TMDs.

In the strict nonrelativistic limit, we have particle con-
servation and the nucleon consists of exactly 3 (valence)
quarks. Then we deal with the dynamics of constituent
(‘valence’) quarks, whose momenta become negligible
with respect to m, and whose binding energy becomes
negligible with respect to the nucleon mass such that M =
3m up to relativistic corrections. The heavy constituent
quarks obey spin-flavor symmetry which is introduced in
the context of TMDs in Appendix A in Eq. (Al).

The nonrelativistic limit makes the following predic-
tions for the collinear parton distribution functions

lim f7(x) = Nq5(x - 1),

non-rel 3

lim gf(x) = n(l)%lr_rrlelh?(x) o P46<x — —).

non-rel 3

(61)

If the momenta of quarks are not negligible with respect to
their mass m, the §-functions in Eq. (61) are spread out.
The normalizations N, and P, in Eq. (61) dictated by
SU(6) spin-flavor symmetry are given in Eq. (Al) in
Appendix A. One can check that all sum rules are correctly
reproduced:
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PHYSICAL REVIEW D 80, 014021 (2009)

[ dxfi(x) =N, (‘normalization’), z f dxxfi(x) =1 (momentum sum rule),
q

Z fdxg‘f(x) = Zfdxhi’(x) = gﬁ{)) = g(TO) =1 (‘spin sum rule’/isoscalar tensor charge),
q q

f dx(gh(x) — gl(x) = [ dx(Ri(x) — hd(x) = g9 = ¢

The model is formulated in a covariant way, which
means that it also can be applied to the situation when
the motion of quarks is assumed to be nonrelativistic, i.e.
when |p| < m and p, = m{l + O(p*/m?)}. In order to
formulate the nonrelativistic limit in our model, we assume
SU(6) symmetry and set the covariant momentum distri-
butions in unpolarized or polarized nucleons equal, i.e. we
assume G(p°) — N, J(p) and H(p’)— P, J(p) with
[ & pJ(p) = 1. Of course, J(p) strictly speaking depends
only on the modulus |p| (or p° = +/m? + |p|?) due to the
rotational symmetry in the nucleon rest frame, but this
notation is more convenient for the following.

In the nonrelativistic limit one expects only small mo-
menta p — O to be relevant in the integral over d° p. Thus,
it is natural to assume

lim J(p) — 89 (p) (63)
non—rel
This is in some sense an ‘axiom’, and we have to verify that
it yields to consistent results. For that we insert (63) in
Eq. (5), and obtain (notice that p® — m for |p| < m)

) d3ﬁ pO + pl
9(x) = G (5 -
Jim 1100 = Nyaut [ 500 o5~ x)
xM _(m 1
= Nq 7 S(M - X) = NqS(x - g)
H(-J
=1
(64)

Thus, our prescription (63) gives the correct nonrelativ-
istic result. What do we obtain for the collinear polarized
distribution functions? Let us insert (63) in Egs. (9), (10),
and (14). We obtain

. . 1
n(}é{I}elg(%(X) - nolélgelh?(X) B an(x B §>

(65)

Thus, the polarized distributions g{(x), g%(x), h{(x) be-
come equal and correctly reproduce the nonrelativistic
result (61). Thus, we see that our formulation of the non-
relativistic limit also yields correct results for the polarized
parton distribution functions.

Let us now apply the nonrelativistic limit to the descrip-
tion of TMDs. We obtain

lim gf(x) =
non—rel

L 66)

dim 71 pr) = N, =)o),

c

g (Bjorken sum rule/isovector tensor charge).  (62)
|
n(}gr—nrelg(l[(x’ pr) = Pq8<x - Nic)ao)(ﬁr), (67)
n()lﬂi{r}elh‘f(x, pr) = an(’c - Nip)a(z)(ﬁr), (68)
Jim g pp) = N.P,3(x = 3)3% ). (69
Jim hif s pp) = =Ne2,3(x = )00 0
Jim it pr) = N;m(x - Nic)aw(ﬁr). (71)

In gll]f’ (x, pr) and hlqu(x, pr) the factors ¥ = N, appear,
while in h]lT" (x, pr) the factor %; = NTZ appears with N, =
3 colors. These factors appear here somehow artificially
because the nucleon mass was chosen in the Lorentz-
decomposition of the correlators (2)-(4) to compensate
the dimension of transverse momentum. Nevertheless,
once one introduces the nucleon mass in this context
(and sets the according ‘units to measure’ TMDs), the
integrated functions gi/(x), hi/(x), hi(x) are larger
then the parton distributions g?(x) and A7 (x). It even hap-
pens that Ih# (x)] > f1(x) as also observed in other models
[64,65]. This is not in contradiction with positivity which
constrains only the transverse moments of TMDs, see
Egs. (27)-(29).

From Egs. (66)—(71) we see that the transverse moments
of all TMDs vanish. In particular, hllT(l)q(x) vanishes. This
is consistent from the point of view of the relation between
helicity, transversity and (the transverse moment of) pret-
zelosity, hf‘T(l)q Eq. (42), since in the nonrelativistic limit,
helicity and transversity distributions become equal (65).

Thus, a nonzero transverse moment of pretzelosity [64]
or any other TMD (as we learn here) can be considered to
be a ‘measure of relativistic’ effects in the nucleon.
Clearly, any effect of TMDs would disappear from a cross
section (or spin asymmetry). However, the TMDs them-
selves are all nonzero in the nonrelativistic limit, see
Eqgs. (66)—(71).
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VIII. CONCLUSIONS

We have generalized the covariant model developed in
Refs. [81-86] to the description of T-even leading-twist
TMDs in the nucleon. We have paid particular attention to
the demonstration of the consistency of the extended ap-
proach. For example, we have shown that it gives the
familiar results for the ‘integrated’ functions known from
studies of collinear parton distributions [81-86], proven
that it satisfies inequalities among TMDs, and discussed
that it yields results consistent with the large-N,. limit,
lattice QCD, and many other models.

In particular, we have also shown that in the approach a
relation, which is derived from the QCD equations of
motion and connects several TMDs and a pure twist-3
(‘tilde’) function, is consequently satisfied in the model.
In our covariant approach with free partons ‘consequently’
means that the ’tilde’-function is absent.

We have rederived several known quark-model relations
among polarized leading-twist TMDs [63—65], and found
several new relations so far not observed in models, with-
out assuming SU(6) spin-flavor symmetry. In our approach
these relations refer to a scale of several GeV2. Whenever
previously such relations were observed, the corresponding
model explicitly made use of the SU(6) symmetry and the
results referred to low hadronic scales [63—65]. Not all
quark models support these relations [68], and by including
gauge-field degrees of freedom [69] such relations are
definitely spoiled which one expects to be the case also
in QCD. However, it remains to be seen whether in nature
some of these relations could at least be approximately
satisfied.

We have also shown that the Wandzura-Wilczek-type
approximation, which allow to approximate the transverse

moments of g1/ and k" in terms of respectively g/ (x) and
h(x) are valid in the model upon the neglect of quark-mass
terms. In QCD these relations are valid if one in addition
neglects also pure twist-3 terms [25].

As an interesting digression, we have discussed how the
covariant model framework can be used to formulate the
nonrelativistic limit for TMDs, and derived the nonrelativ-
istic limit results for all leading-twist T-even TMDs. In the
nonrelativistic limit all these TMDs are nonzero, however,
their transverse moments vanish. Interestingly the nonre-
lativistic approach is consistent with the basic features of
the relativistic model calculations.

In this work we focussed on the general aspects of
TMDs in the model. Further consequences for TMDs due
to the parton intrinsic motion, as well as phenomenological
applications (see [66] for first results) will be discussed
elsewhere.
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APPENDIX A: PROOF OF INEQUALITIES

In this Appendix we prove that the inequalities (27)—(29)
are satisfied, if one assumes SU(6) symmetry and if one
assumes all TMDs to be described in terms of the same
covariant distribution J(p°®) normalized as [ d°pJ(p°) =
1. Then, in SU(6) with N. = 3 denoting the number of
colors [102], the TMDs of definite flavor are given by

N.+1 N.— 1
f1) =N, f1(x), N, = 7 Ng = 5
N.+5
glli(x) = qul(x)’ Pu = CT’
_ _N.— 1 L 1L ol
P, = c and analog gi7, 1y, hiy, hiy. (A1)

The ‘flavorless’ functions introduced in (Al) are given,
respectively, by Eq. (33) with G(p°) replaced by J(p?), and
by Egs. (34)-(38) with H(p®) replaced by J(p°). We
immediately see that g,(x, pr) = f1(x, pr) and
hy(x, pr) = f1(x, pr). Since |P,| <N,, this means that
the ‘trivial’ inequalities |g(x, py)l = fi(x, py) and
|2 (x, pr)l = f{(x, pr) hold.

Using the notation of the ‘unintegrated’ transverse mo-
ment of a TMD introduced in (30) we obtain the following
equalities among the ‘bare’ (flavorless) functions

f1(x pr) + g1(x, pr) = 2k (x, pr) (A2)

i pr) = g1t pr) = =20 pr) (A3)
g1 pr)? = hitV(x pr)?

Ph (11 prf — 1 pr)D. (Ad)

4M?

The relations (A2) and (A3) among the bare distribu-
tions were discussed previously in various models [64,65].
It is important to notice that even if one assumes SU(6)
symmetry, the relations (A2) and (A3) among bare distri-
butions do not need to imply relations among TMDs of
definite flavor, though it is the case in the bag and
constituent-quark models [64,65]. But the spectator model
of Ref. [63] provides a counterexample: there the bare
TMDs satisfy (A2) and (A3), but the flavored TMDs con-
structed from them do not.

The equalities (A2)—(A4) do not mean that the inequal-
ities (26)—(29) are saturated. That would be the case, in
SU(6), only for TMDs of s-quarks in A? where N, = P, =
1, see [98] where the Soffer bound [97] was discussed. For
the nucleon in SU(6) we have |P,| < N, and the equalities
(A2)-(A4) lead to real (never saturated) inequalities
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(26)—(29). (We recall that T-odd distributions are absent in
our approach.)

Thus, we conclude that the inequalities are manifestly
satisfied in our approach—if one assumes SU(6) symme-
try. If one does not, the positivity conditions (26)—(29)
‘translate’ into certain constraints among the covariant
momentum distributions G(p°) and H(p°), see Ref. [84].

APPENDIX B: RELATIONS AMONG TMDS IN
SU(6)

In this Appendix we discuss relations among TMDs that
are obtained in our approach under the assumptions of
SU(6) symmetry and that at all TMDs are characterized
in terms of the same covariant momentum distribution
J(p®), see Appendix A. From Egs. (A1)~(A4) we obtain
the following relations among TMDs with definite flavor

P
N S0 pr) + gl pr) = 20 pr) - (BD)
q
P
N S1G pr) = gl pr) = =27 (x pp)  (B2)
q

it (x, pr)? = hiM(x, pr)?

= ﬁ(P—gffi’ (x, pr)* = 8l pT)Z) (B3)
4M*\N?

We remark that the relations (B1) and (B2) hold in the bag

[64] and constituent-quark [65] model, but not in spectator

models [63,68]. Integrated versions of (B1) were discussed

previously in [90,98,99].

The assumption of SU(6) symmetry by itself is a phe-
nomenologically well-motivated concept especially in the
valence-x region, see [78] for a recent discussion in the
context of TMDs. However, in our approach this is not yet
a sufficient condition for the relations (B1)-(B3) to be
valid. In addition to SU(6) symmetry, we have to assume
here that the covariant momentum distribution J(p°) ap-
pears in all TMDs.

This fully supports the observation [64], that SU(6)
symmetry in a quark model alone is not a sufficient con-
dition for this kind of relations to hold. Another SU(6)
symmetric model, which in general does not support (B1)—
(B3), is the spectator model of [63]—though upon an
additional assumption (large-N, limit) they hold there,
too [64].

APPENDIX C: PROOF OF THE WW-TYPE
RELATION EQ. (55)

In this Appendix we present two independent proofs of
Eq. (55). For the first proof, we use the notation of Eq. (22)
in [86] to write the model expressions (35) and (37) as

PHYSICAL REVIEW D 80, 014021 (2009)
X3 m
hV(x) = —x2V_ (x) + 5 Voal) + @(M)’
x2 m
hy(x) ==V _,(x) + O(~). C1
0 =3V + 0f5) e

Then, exploring the identity V' ,(x) =3V’,(x) derived
Eq. (24) of [86], we obtain

VOV k() X m
( L ) — - VL0 S VLW @(M)
m
=0(— C2
(7). (©2)
which is equivalent to Eq. (55).
For the second proof we show that hL(l)q(x) and

—x* fle dy Y hi(y) have the same Mellin moments. Notice

that in the model all TMDs j4(x) are well-behaving func-
tions without singularities, have no support outside the
region x € [0, 1], and have well-defined Mellin moments
JldxxNji(x) ¥ N=0,1,2,... Therefore Eq. (55) is
equivalent to

N+1

1 m
= NpLMaey 4 q = 0=
Ay L dx(x hip " (x) N T 3h1(x)) @(M).
(C3)
Introducing the notation [dp’] = i Z,(f;)i we write the

expressions (35) and (37) for h?(x) and hl(1 9(x) as

i = =" frapia(”
m
+o(7)

i) =" [rapa(P 2

_p1_>2p0+p]
X )X
M M

(C4

1
P x))c2 + @(%) (C5)

where p® = |p| (recall we neglect m). We insert the ex-
pressions (C4) and (C5) into Eq. (C3), interchange the
order of the integrations over x and p, introduce spherical
coordinates such that p! = || cosé, and obtain

MN“ [{d3p}|p|N+2< (1 — cosd)NT2(1 + cosb)

N (1- cosﬁ)N”) N (9<ﬁ>

N+3 M (o)

Now, our proof is completed because in (C6) the integral

over z = cosf is

fjl dz(—(l — N1+ o) + %)

_ f ' dz d_z(—(l - z})ergl * Z)) =0. (o)
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The probabilistic model of parton distributions, previously developed by one of the authors, is
generalized to include the transversity distribution. When interference effects are attributed to quark
level only, the intrinsic quark motion produces the transversity, which is about twice as large as the
usual polarized distribution. The applicability of such a picture is considered and possible corrections,
accounting for interference effects at the parton-hadron transition stage are discussed.
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L. INTRODUCTION

Nucleon spin functions represent a sensitive tool for
understanding the nucleon internal structure in the lan-
guage of QCD. Up to this day we have accumulated a very
good knowledge of the nucleon spin functions g; and g»,
which were measured in deep-inelastic scattering [1-8].
A further important and interesting quark spin distribu-
tion function is the transversity, the third, nondiagonal,
element of the quark spin density matrix. Transversity is
not accessible from the measuring of deep-inelastic scat-
tering, since it corresponds to the helicity flip amplitude.
Its measuring is more complicated and that is the reason
why some more accurate and complete experimental data
on the transversity are still missing. However, the recent
and/or future data from the experiments HERMES
(DESY-Hamburg), CLAS (JLab), COMPASS (CERN-
Geneva), and RHIC (Brookhaven National Laboratory)
could be interpreted also in terms of the transversity [9—
11]. For the present status of research in both theory and
experiment, see, e.g., [12] and overview [13].

In Refs. [14,15], the probabilistic, covariant quark-
parton model (QPM), in which intrinsic quark motion
with spheric symmetry is consistently taken into account,
was developed by one of us (P. Z.). It was shown that such
a model nicely reproduces some well-known sum rules
and gives a very reasonable agreement with experimental
data on the spin structure functions g; and g,. Assuming
SU(6) symmetry, a calculation was done from the input on
unpolarized valence quark distributions ¢y. The aim of
this paper is to extend this model also for description and
calculation of the transversity distribution.

IL. TRANSVERSITY

First, let us shortly summarize how the spin structure
functions g;, g, were calculated in the paper [14]. The
antisymmetric part of the tensor related to the photon
absorption by a single quark reads:

tozB = msaﬁAanWU’ (1)

where g, m, w are the photon momentum, quark mass,

0556-2821/2004/70(5)/054018(7)$22.50

70 054018-1

PACS numbers: 13.60.-r, 12.39.Ki, 13.88.+e, 14.65.—q

and polarization vector; the corresponding handbag dia-
gram is in Fig. 1(a). Then it was shown that the corre-
sponding tensor related to the target (proton) consisting
of quasi-free quarks can be written as

P a3
TEYA/; = saﬁ)‘gq)‘i /H(p—>w"8<@ - x)l;
2Pgq M Pq Po
0> 2
2Pq’

where M is the proton mass, p and P are the quark and
proton momenta. The distribution H is the difference of
the quark distributions with opposite spin projections. In
the proton rest frame one can write

H(py) = G+(po) — G_(po)- 3)

For the time being, if not stated otherwise, we consider
that quark charge equals unity. Further, we showed that
the covariant form of the quark polarization vector reads

w? = AP? + BS? + Cp°, “)
where S is the proton polarization vector and
S M
A=-—_P2 g1 c==a
pP + mM m

Finally, in the last step the functions g, g, were extracted
from the tensor (2). In the approximation

0% > AM?*x? (6)

and, identifying the beam direction with coordinate 1 in
the proton rest frame, we obtain

a b
\
\\S q §
\
\ o +c.C.
P, w

FIG. 1. Diagram related to deep-inelastic scattering (a) and
the transversity (b); see text.

© 2004 The American Physical Society
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§1(x) = % [H(Po)<m +p + popj m)

+ &
xg(u—x)—”, (7)
M Po
1 pi—pri/2
-~ |H 2L =
! [+ 72
+ 3
x5<po P >d @)
M Po

which implies

gr(x) = g1(x) + g2(x)

2 + 3
__pro <m+ r/ )5<P0 pl_x>d_p.
+m M Do

)
Since
2 2
p P
mtpyt = m = potpotpr T
potm po + m
—py ¥ p _ (po = m)(po + m) —
0 ! po T+ m
2 2
P"— D1
= + -
Po T D1 po + m
2
Pr
= J,— — R
Po ™ P po + m

the 6 — function allows a useful alternative representation
of g;:

_1 17 pot i \dp
gl(x) = E [H(p0)<Mx Do + m>5< " x)E
(10)

Let us also remark that in the paper [16] we showed that a
similar approach for the corresponding symmetric part
of the proton tensor gives the unpolarized structure func-
tion

filx) =
= Mx [[G+(Po) + Gf(Po)]‘S(m - )

Fy(x)
X

d3
Po
1n

Now, if one assumes the same spheric shape of the
distributions G. for both opposite polarizations, then
the corresponding probabilities can be parameterized as

G+ = G(po)cos*(n/2), G_ = G(po)sin*(n/2),
O=n=m (12)

M

so for n = 0(7r) we have a pure state with the polarization
+(—). For example, in the case of SU(6) we have cosn =
2/3(—1/3) for u(d) quarks. The last relations imply

PHYSICAL REVIEW D 70 054018

G+ (po) + G_(py) = G(py),

(13)
G+ (po) = G-(po) = G(pg) cosn,
so the relations (8)—(12) can be rewritten as
1 2
0109 = 5 cosm [ Glpo)(Mx = L)
pot+t m
+ 3
><5<—p° Pi —x)d—p, (14)
M Po
1 2—p2/2
g (x) = — 5 cosm fG(P0)<P1 + M)
po+ m
+ 3
XS(L Pi_ )d (15)
M Po
1 z/2
gr(x) = 5 cosn [ Gpo)(m +-L1
2 po t m
+ 3
xg(M >d (16)
M Po

1) = Mx / G(po)6<m - x)‘ﬁp. (17

M Po

Here, in the same approach, we shall try to calculate
the transversity. Generally, transversity may be related to
the auxiliary polarized process described by the interfer-
ence of vector and scalar currents [17,18], so that the
respective quark tensor carries only one Lorentz index.
The simplest handbag diagram in Fig. 1(b) corresponds to
the expression

Ta = sa,BA(rp'Bq/\WU: (18)

which will be used instead of the tensor (1). In the next
step we integrate this vector equally as the tensor in (2).
Here we assume for the time being, that due to rotational
symmetry in the proton rest frame, the transversity dis-
tribution is generated by the same function H as that in
the case of the longitudinal one:

1 P &’
Ta = 80(,8)\0'in H L p'BWU‘S ﬁ p
2Pq M Pq Do
(19)

Obviously, only the terms S7, P from the vector (4)
contribute here, i.e.,

1 pP
T, = A H o
o= oot [ 1(5)(5

pS ) 55<pq

d3
S L2 o)
pP + mM Pq Po

Now we take the proton rest frame and assume

=(0,0,1,0), (21)

054018-2
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q=(v,1ql,0,0), (22)

P=(M,0,0,0). (23)
Then one can check that only 75 # 0,

1
T; = Mo fH(P0)<Po|(1| - piv

p3 >5(P0V_P1|Q| B )d3p
X|—.
po+tm Mv

—lql (24)

Po

Further, if we again assume approximation (6), then

@ =4/1+4M>x?/Q* — 1 (25)
14

and

T; = % [H(Po)<p0];[pl - M(pf%—l— m))

— 3
xa(po P _ x>d_p
M Po

=3 froos = s o )

M Po
_1 pi/2
= cosn [ Gto(x = )
po+ pi >d3p
x(Lo 1 \EE (26)
( M Po

So now we shall try to identify the transversity with the
dimensionless function

2
8q(x) = cosn/G(p0)<Mx - rr/2 )
po t m
+ 3
Xg(u — x)d_p 27)
M Po

If we use the alternative notation

q(x) = f1(x), Ag(x) = 2g(x), Agr(x) = 2gr(x),

(28)

then combination of the relations (14) and (16) assuming
m — 0 gives

8q(x) = Ag(x) + Agr(x). (29)

Note that for the first moments, assuming the validity of
the Burkhardt-Cottingham sum rule, this implies

1 1
f Sq(x)dx = 2[ Ag(x)dx. (30)
0 0

Further, using the Wanzura-Wilczek [19] relation, which
was proved for our g4, g, in [15],

X

21(x) + g(x) = f‘g‘y(y)dy, 31)

PHYSICAL REVIEW D 70 054018
the rule (29) can be represented as
1Aq(y)
5q09 = ag() + [ 20 %ay, (32)
X

Moreover, in the same paper we suggested the relations
between the spin functions and valence quark distribu-
tions:

1
gl(x) = <20 [qv(x) — ¢ / ";—?)dy],

2

40 = [ gy + 30 [ qugy ) ol @)

q=ud,
which imply

o4t = cosn, [ aut) 2 [ MDay] )

So now one can calculate dq either using experimental
input on Aq or from some fit on the valence distribution
qy. In Fig. 2 we show transversities calculated with the
use of formulas (32) and (34). The spin functions Au and
Ad are extracted here from the parametrization of the
world data on the proton spin function g; [4] assuming
the SU(6) approach,

Au(x):Ad(x) = %:(— %) s

gi1(x) = %[gAM(X) + éAd(x)].

For the valence functions xuy(x) and xdy(x) we use the
parametrization obtained by the standard global analysis
in [20]. All the parametrizations are taken for 0% =
4 GeV?/c?. The reason why in this figure the curves
based on the experimental input on g; (dashed lines)
are above the curves calculated from fitted gy (solid
lines) can be the same as those discussed in [15] for the
81-

Now we check if the obtained transversities satisfy the
Soffer inequality [21]:

Xou

o6 | @ | % o

FIG. 2. Transversities of the u (a) and d (b) valence quarks
calculated from the valence distributions (solid lines) and
extracted from the experimental data on proton spin function
g (dashed lines)—the first approach; see text.

054018-3
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1591 = 1140 + Ag()] = ¢" (9, (36)

After inserting 6¢, f}, g; from the relations (27), (17), and (14) we get

2/2 + & 1
coan[G(po)(Mx __ri/ >5<p0 P x)—p =— /[MxG(pO) + cosn,MxG(p,)
pot+m M Po 2
2 + d3
— cosn, Pf m]8<p0Mp] - x)_p (37
Po Po

and after rearranging the right-hand side one obtains

/2 + & 1 + d?
coan/G(p0)<Mx __ri/ >6<p0 Pr_ x)—p =-_Mx(1 - coan)fG(p0)8<M— x)—p
pot+tm M Po 2 M Po
/2 + dp
+coanfG(po)<Mx— Pt/ >5<p0 P _ )
po +m M po’
(38)
which means that
+ dp
18901 = 8q() = Masin®(n,/2) [ G(po)a(P Pt =) P, (39)
po’

which is apparently correct for §g(x) = 0. Further, since

My — pa/2 _ 2Mxpy + 2Mxm — (p§ —m*) + p? _ 2Mxpy + 2Mxm — (p3 — m?) + M*>x> — 2Mxp, + p}
potm 2(po + m) 2(po + m)
_ (m + Mx)? -0,
2(py + m)
we have also
2 3
Jotm(is= HENa(Pig = s} = [ SR o =)0

which means that the transversity sign is controlled only by the sign of cosn, which is determined by the sign of
G (po) — G_(py)- So in our SU(6) approach the inequality (39) is safely satisfied for u quarks. Now let us consider
negative 8¢, for d quarks in the SU(6) approach, when cosnp = —1/3 and sin?(7/2) = 2/3. Then the combination of

Eq. (27) and relation (39) gives

f G(po)<Mx -

which is obviously valid. So in the SU(6) approach the
Soffer inequality is satisfied for both u# and d quarks.
However, let us now consider a rather extreme case
when cosn — —1. Relation (39) for the angle n = 7
reads

2/G(p0)(Mx
(41)

which contradicts the inequality (40), so in this limit
also, the transversity (27) contradicts the Soffer inequal-
ity. Why?

The reason is in the assumption that transversity is
generated by the same function H = G cosn as the spin
functions g, and g,. The resulting transversity contradicts

p7/2 NI I
p0+m M

P32 >5<P0+P1_ >d3 <0,
potm M Do

&3 + &3
ap_ Mx/G(po)(S(pO D1 _x)_P’
Po M

Po

[
the Soffer inequality in the case of large negative quark

polarization. Indeed, inequality (36) means that |8q(x)|
cannot exceed gt (x). At the same time, large negative
polarization takes place for cosn — —1; then g* (x) be-
comes small, while 8¢(x) is large (and negative). Below
we shall modify the transversity definition as follows.
The structure functions are proportional (see, e.g., [17])
to the combinations of amplitudes:

o« Ma (Xay+(X) + at_(X)a,-(X)] (42
X

g1 % Y [ah (Xa . (X) —at_(X)a, (0] @3)
X

054018-4
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8g = Y lat (Na—(X) +a" (Na (X)) (44)
X

Now, in our approach we identify

Zai+(X)a++(X) = G(po),

X (45)
Zai,(X)a+—(X) = G_(po),

X

where G, = G_ are the distributions in relations (13)
from which the structure functions g, g-, gr and f; are
constructed in Eqgs. (14)—(17). But what about the remain-
ing interference function

Gr(po) = Y [at (X)a__(X) + a~_(X)a,. (X)), (46)
X

which we are going to insert into Eq. (27) instead of
G; — G_ = Gcosn? The Gy is a new function, which
has no definite relation to the functions G... However, as a
consequence of

Slac () =a (IP =0, @7
X

one gets

|G7(po)l = G+ (po) = G(pp)cos?(n/2). (48)

So in the first step we check the Soffer inequality for both
corresponding extremes * 8¢ .4 (¥);

5qmax(x) = C052(77q/2) /G(Po)(Mx

pr/2 )5(170 +p x>d3_p
pot+m M Po

(49)

After inserting into the Soffer inequality’ one gets for
both extremes

2/2 + &
- i2(n /2 PT/2 g(Pot P1_ p
0= sint(n,/2) [ Glpo) P 5P P - )0,

(50

so the inequality is satisfied for any transversity 8¢(x) in
the band * 8¢, (x) given by Eq. (49) with any n,. In
fact, two inequalities are now satisfied:

15401 = 3gs() = 5[g(0) + Ag()] (1)

and in this way we have shown that taking into account
the interference nature of the transversity at the stage of
parton-hadron transition is quite substantial for general
compliance with the Soffer inequality.

Obviously, nothing can be said about saturation of the
inequality

'One can start from relation (38), where on the Lh.s. cosn,, is
substituted by cos?(7,/2).

PHYSICAL REVIEW D 70 054018
[6g(xX)] = 8¢max(x) (52)

within this simple approach. Concerning the sign of the
transversity dq, let us note that now there is no simple
correspondence with the sign of Ag.

Since the relations (27) and (49) differ only in the
n-dependent factor ahead of the integral, the relations
(29), (32), and (34) imply for the second approach

8qmax () = k- [Aq(x) + Agr(x)]
A
=K [Aq(x) + ﬂ —q;(y)dy]; (53)
_ cos*(n,/2)
T cosm,

8 (x) = cos2<nq/2)[qv<x> . / 'q Vyﬁy) dy}. (54)

This approach for the transversity is compared with the
previous one in Fig. 3, again assuming SU(6) approxima-
tion for contributions from u and d valence quarks.
However, one should point out that curves corresponding
to the second approach represent only upper limits ¢«
for transversities, in the sense of the relation (51). Part (a)
of the figure shows results for u quarks. The relations (53)
(dashed lines) and (54) (solid lines) are compared with
those in Fig. 2, calculated from Eqgs. (32) and (34). It
follows that curves of the second approach are enhanced
by the factor cos?(7,/2)/ cosn, = 5/4 with respect to
the first one. Part (b) of the figure demonstrates similar
curves for d quarks, but since cos?(n,/2) = — cosn, =
1/3, both the corresponding pairs of curves are equal up
to sign. So only the second pair is displayed. The dotted
lines in both parts represent tranversities calculated in
Ref. [22] in the LO and evolved from the initial scale

0.15
o8 @ (b)

01

Xou

0.05

FIG. 3. Transversities of the u valence quarks (a) calculated
from the valence distributions (solid lines) and extracted from
the experimental data on proton spin function g; (dashed lines).
Lower curves correspond to the first approach from Fig. 2;
upper curves represent the second approach given by 8¢
calculated from Egs. (53) and (54). The corresponding trans-
versities §¢ ., Of the second approach for the d valence quarks
(b) coincide, up to sign, with the first approach from Fig. 2. The
dotted lines represent the calculation [22], with opposite sign
for d quarks.
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0.6 GeV?/c? to 4 GeV?/c2. Obviously, our results are
well compatible with them.
Further, let us analyze the relation

Sauin() = 140 + AgW] = 4" (). (59)

Obviously, its saturation is equivalent to the equality in
relation (50), which takes place either for n = 0 (pure
state of the quark with polarization +) or for static quarks
(p% = 0). On the other hand, in the limit m — 0 and with
the use of Eq. (33), one can write

q"(x) = %{qv(x) + coan[qv(x) - 2x7 f q‘;gy) dy}

= cos*(n,/2) - qy(x) — x* cosn, fl q\;gy) dy.
(56)

In this way, both sides of relation (55) are displayed in
Fig. 4. It is seen that particularly the transversity of d
quarks is considerably more constrained in this approach
than by the Soffer bound ¢*. The relationship between
both bounds depends on cos7,. One can check that

Jo 8Gmax (¥)dx _ 2+ 2cosy,
Joa* (x)dx 3+ cosy,

which in the SU(6) approach gives fractions 10/11 and
1/2 for u and d quarks.

(57)

III. SUMMARY

The covariant QPM, which takes into account intrinsic
quark motion, was generalized to involve the transversity
distribution. Two ways of generalization were considered:

1) The interference effects were assumed on a quark
level only (interference of vector and scalar currents
produce the quark trace with one Lorentz index), and
the generic quark polarized distribution H = G, — G_
was assumed the same as that for the structure functions
g, and g,. We derived the relation between the trans-
versity 8¢ and the usual polarized distribution Ag, which
implies that the resulting transversity is roughly twice as

PHYSICAL REVIEW D 70 054018

5 0.15
0s | @ g )

01

x5u

0.05 |

FIG. 4. Bounds on the transversities of the u (a) and d (b)
valence quarks: 8¢y, (solid lines) and g™ (dashed lines).

large as the usual distribution function. We discussed the
compatibility of the obtained transversity with the Soffer
inequality, and we have found that the inequality is
violated in the case of large negative quark polarization.

2) In the second approach we accounted also for inter-
ference effects at the quark-hadron transition stage,
which is formally represented by the interference sum
(46). In this approach, assuming the validity of Soffer
inequality at the stage of parton-hadron transition (48),
we obtained a new bound on the transversity, rather than
the transversity in itself. This bound is more strict than
the Soffer one. Roughly speaking, the new bound is more
restrictive for quarks with a greater proportion of intrin-
sic motion and/or smaller (or negative) portion in the
resulting polarization.

For both approaches, with the use of the obtained sum
rules, we have done the numeric calculations in which
either experimentally measured spin function g;(x) or the
valence quark distributions gy (x) were used as an input.
To conclude, in general our calculations suggest that the
quark intrinsic motion plays an important role for the
spin functions—including the transversity.
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The Pretzelosity Distribution Function and
Intrinsic Motion of the Constituents in Nucleon
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Abstract. The pretzelosity distribution function h]iT 1s studied in a covariant quark-parton model
which describes the structure of the nucleon in terms of 3D quark intrinsic motion. This relativistic
model framework supports the relation between helicity, transversity and pretzelosity observed
in other relativistic models without assuming SU(6) spin-flavor symmetry. Numerical results and
predictions for SIDIS experiments are presented.

Keywords: transverse momentum dependent distribution function, single spin asymmetry (SSA)
PACS: 13.88.+e, 13.85.N1, 13.60.-1, 13.85.Qk

1. INTRODUCTION

Transverse parton momentum dependent parton distribution (TMDs) and fragmentation
functions [1-6] offer the access to novel information on the nucleon structure [7]. TMDs
can be accessed in processes like semi-inclusive deep-inelastic lepton nucleon scattering
(SIDIS) [8]. Data on such reactions [9—14] provide first insights [18-24]. However,
model calculations play an important role for the understanding of the novel functions
[25-37].

An important question in this context is whether it is possible to relate unknown
TMDs with possibly better known ones. Such relations cannot be exact, since all TMDs
are independent. Approximations motivated partly by data were discussed in [38]. The
ideal playground to motivate and test any such relations among TMDs are models.

An interesting relation between pretzelosity hlLTq , transversity h? and helicity g‘f was
observed in bag model [26]. The name pretzelosity reflects that this function *'measures’
an appropriately defined deviation of the nucleon from spherical shape which could
look like a pretzel [7]. This relation holds also in the spectator model [25], and was
subsequently confirmed in the constituent quark model [27] but not in the model of [28].

The purpose of this work is to study pretzelosity, and its possible relations, in the
covariant model of the nucleon of Ref, [30]. In this model the intrinsic motion of
partons inside the nucleon is described in terms of a covariant momentum distribution.
The model was applied to the study of unpolarized and polarized structure functions
accessible in DIS f{(x), g{(x) and g% (x) [30, 31] and extended to compute transversity
h{(x) [32]. In this work we will generalize the approach to the description of TMDs,
focusing on chiral-odd TMDs accessible with transverse nucleon polarization.

CP1149, Spin Physics, 18" International Spin Physics Symposium
edited by D. G. Crabb, D. B. Day, S. Liuti, X. Zheng, M. Poelker, and Y. Prok
© 2009 American Institute of Physics 978-0-7354-0686-5/09/$25.00
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2. CHIRAL-ODD TMDS WITH TRANSVERSE POLARIZATION

We focus on chiral-odd TMDs in a nucleon polarized transversely, e.g. in SIDIS, with
respect to the hard virtual photon ¢* = (¢%4|,0,0). The light-front quark-correlator
with the process-dependent Wilson-link % [6] where z+ = (z°+z')/\/2 etc.,

= dedsz

O(x,Pr,S7)ij = &'’ (P, St|;(0) #(0,z,path) wi(z)| P, S7) 7

(275)3 zt=0,pT=xP"
(1
allows to define (3 out of the 4) chiral-odd TMDs in the nucleon as follows
1 _ s . ik _ 152 sk ck ek pk
Etr{ioﬁ% ¢(x7pT:ST)] = S+ Py ZfT ) L iy + MpT hi, ()
v N

where £32 = —¢2 — 1 and zero else. The only structure surviving the fi7-integration in
(1) is transversity A¢(x). Nucleon polarizations and Dirac-structures other than that in
Egs. (1, 2) lead to further leading- and subleading-twist TMDs [3, 4, 16].

3. THE COVARIANT MODEL OF THE NUCLEON AND TMDS

The starting point for the calculation of the chiral-even functions accessible in DIS,
ST (x), gf(x), g7(x), is the hadronic tensor [30, 31]. In the model it is assumed that DIS
can be described as the incoherent sum of the scattering of electrons off non-interacting
quarks, whose momentum distributions inside the nucleon are given in terms of the
scalar functions: G = G! + G* for unpolarized and # = G' — G for polarized quarks.

G'(pP/M) denotes the distribution of quarks of some (not indicated) flavour that are
polarized parallel (antiparallel) T(]) to the i-axis, where p is the quark momentum and
M the nucleon mass. Though all expressions can be formulated in a manifestly covariant
way, it is convenient to work in the nucleon rest-frame, where the ¥ become functions of
p¥ = /7?2 + m? with m the quark mass, and the distributions are rotationally symmetric.

The chiral-odd 49(x) cannot be accessed in DIS through the hadronic tensor. However,
for theoretical purposes one may consider the auxiliary process described by the interfer-
ence of a vector and a scalar current, described on the quark level by 7§ = g, BAv pB qkw"
where wV is the quark polarization vector. The nucleon current follows from convoluting
T¢ with the momentum distribution of polarized quarks Z(p°) and reads

1 d3p pO _pl
1) = gpotapnt® [ S 1003 )P ®)
The auxiliary current is related to transversity as
2M Ty(x) €% = Sp 1 (x) . (4)

Before attempting to extend the approach to TMDs, let us stress that the QCD defini-
tion of TMDs includes a Wilson line absent in our model with no gauge boson degrees
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of freedom. In such an approach time-reversal (T) odd TMDs, such as the Boer-Mulders
function A in (2), vanish [5, 6].

Now we turn to the question how to extend the approach to describe of TMDs,
focusing here on chiral-odd ones in a transversely polarized nucleon. For that we observe
that the expression for the auxiliary current (3) is of the type: Ty (x) = [ d>prTo(x, pr).
In the following we explore the consequences of what happens if one does not integrate
out transverse momenta in this expression.

With S denoting the nucleon polarization vector (here S* = (0,0,87) with |Sy| = 1)
the most general expression [31] for the covariant quark polarization vector w* reads

S M pS
H_—_ _ L7 pH . S
e pP+mMP +§ mpP+mMp ' (3)

From (5) we obtain for the "unintegrated” auxiliary current contracted with £%/ the result

s ; dp! 0__pl . -
2MT“(x’pT)8aj/%H(po)5(p s _x> {S’T(po—pl)—pjr o } ©6)

ptm

By comparing to (2) we read off the following results:

1 0 .1 Lo
) — [Uae s (Pl ) [ - T @)

P M PP+ m)
1 dp' r-r M?
mior) — [Gnets (ol ) |- ®

and hlL ?(x,pr) = 0. Several comments are in order. First, in our approach the vanishing
of the T-odd hf % is consistent. Second, integrating in Eq. (7) over jr yields the model
expression for hf(x) = 8¢(x) from [32]. Third, h# # 0 implies non-sphericity in the
nucleon in the sense of [7] inspite of a spherically symmetric H(pg). Forth, adding 4% (x)
and h#l)q(x) = fdsz%h#(x,pT) yields the model expression for g7(x) = Ag(x)
derived in [31], i.e. we recover the remarkable relation [26]:

glx) — () = 3 M ). )

This relation is satisfied in several [25—27] though not all [28] quark models. Remark-
ably, it follows in our approach without assuming SU(6) spin-flavour symmetry of the
nucleon wave function as was done in [25-27]. This is an important observation: SU(6)
is not a necessary condition for the relation (9) to be satisfied in a quark model. What is
a necessary condition is the absence of gluon degrees of freedom [29].

Finally, we remark that in the chiral limit m — 0 it is possible to relate the transverse
moment of pretzelosity to the twist-3 parton distribution function g (x) [31] as follows

() + g (x) = ﬁ(ﬁ) . (10)

Since in the model the WW-relation holds, g%(x) = [ dvei(y)/y + €(2) [31], this
offers a possibility to estimate pretzelosity numerically in the model framework.
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FIGURE 1. (a) xhﬁgl)q( x) vs. x from the present approach. (b) Asm (39-95) 45 function of x computed
with pretzelosity from Fig. 1a for positive hadrons from a deuterlum target at COMPASS in comparison
to preliminary data [14]. (¢) The same as Fig. 1b but for z1 from proton target at CLAS. The shaded area
is the region allowed by positivity [26], the error projections are from [40].

4. RESULTS AND PHENOMENOLOGY

We estimate hlLT(l)q(x) in our approach using (10) and the WW-approximation for g% (x)
with g7(x) at a scale of 2.5GeV? from [39]. We obtain the results shown in Fig la

The azimuthal SSA from transversely polarized targets, A?}r}w s) <X, ezh H o
allows to access pretzelosity in SIDIS due to the Collins effect [2], see [3, 26] for detaﬂs
We use the information on #7;* from [20-22]. Figure 1b shows that the model results for
the SSA are compatible with preliminary COMPASS deuteron target data [14]. Figure 1¢
shows estimates for the SSA in the kinematics of the CLAS 12 GeV beam experiment.
The error projections from [40] included in the plot demonstrate that CLAS will be able
to measure effects of pretzelosity of the size predicted by the model.

5. CONCLUSIONS

A generalization of the covariant model [30—-32] to the description of TMDs was sug-
gested, and applied to compute the pretzelosity distribution function th‘ In particular,
it was shown that the relation between helicity, transversity and pretzelosity [26] is sat-
isfied in this model — remarkably, without assuming SU(6) symmetry.

A numerical estimate of L4 \as presented, and used to compute ASln(3¢ )
the leading-twist SSA in SIDIS due to Collins effect and pretetzelosity. The model
results are compatible with the preliminary deuteron target data from COMPASS [14].
Predictions of this observable in the kinematics of the CLAS experiment with upgraded
12 GeV beam suggest that information on pretzelosity is accessible at Jefferson Lab [40].
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QUARK INTRINSIC MOTION AND THE LINK BETWEEN TMDs
AND PDFs IN COVARIANT APPROACH

A. V. Efremov !, P. Schweitzer?, O. V. Teryaev® and P. Zavada?

(1) Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia
(2) Department of Physics, University of Connecticut, Storrs, CT 06269, USA
(3) Institute of Physics of the AS CR, Na Slovance 2, CZ-182 21 Prague 8, Czech Republic

Abstract

The relations between TMDs and PDF's are obtained from the symmetry require-
ment: relativistic covariance combined with rotationally symmetric parton motion
in the nucleon rest frame. This requirement is applied in the covariant parton model.
Using the usual PDFs as an input, we are obtaining predictions for some polarized
and unpolarized TMDs.

The transverse momentum dependent parton distribution functions (TMDs) [1,2] open
the new way to more complete understanding of the quark-gluon structure of the nucleon.
We studied this topic in our recent papers [3-5]. We have shown, that requirements of
symmetry (relativistic covariance combined with rotationally symmetric parton motion in
the nucleon rest frame) applied in the covariant parton model imply the relation between
integrated unpolarized distribution function and its unintegrated counterpart. Obtained
results are shortly discussed in the first part. Second part is devoted to the discussion of
analogous relation valid for polarized distribution functions.

Unpolarized distribution function. In the covariant parton model we showed [6],
that the parton distribution function f{(x) generated by the 3D distribution G, of quarks

reads: o2
ai Potpr P1d"Pr
fila) = Ma [ Gyom)s (P2 — ) )

and that this integral can be inverted

(1) - tm (B2

Further, due to rotational symmetry of the distribution G, in the nucleon rest frame, the
following relations for unintegrated distribution were obtained [5]:

fttepr) = 216, (). Q

After inserting from Eq. (2) we get relation between unintegrated distribution and its
integrated counterpart:

fpn == (B8 ema (1 (22Y7). )
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Now, using some input distributions f{(z) one can calculate transverse momentum distri-
bution functions f!(z, pr). As the input we used the standard PDF parameterization [§]
(LO at the scale 4GeV?). The pictures of this distributions for u and d—quarks can be
found in paper [5]. A part of this figures, but in different scale, is shown again in Fig 1.

One can observe the following:
i) For fixed = the corresponding pr—
distributions are very close to the Gaussian

distributions
Py >
(1)

i) The width (p2) = (p%(z)) depends
on x. This result corresponds to the fact,
that in our approach, due to rotational
symmetry, the parameters x and pr are not
independent.

fetoor) ocesp (- 5)

T T 10%¢
L 102k Q
X N X
Ed E 5
10 &
1L
1 E AN | r AN S
= | 1 L L NN
0 0.05 01 0 0.05 01
2
(p/M)
Figure 1:  Transverse momentum dependent
unpolarized distribution functions for u and

d—quarks. Dependence on (pp/M)° for x =
0.15,0.18,0.22,0.30 is indicated by solid, dash, dot-
ted and dash-dot curves.

iii) Figures suggest the typical values of transversal momenta, (p%) ~ 0.01GeV? or
(pr) =~ 0.1GeV. These values correspond to the estimates based the analysis of the
experimental data on structure function Fy(z,Q?) [5]. They are substantially lower, than

~
~

~
~

the values (p2) 0.25GeV? or (pr)
0.44GeV following e.g. from the analysis
of data on the Cahn effect [9] or HER-
MES data [10]. At the same time the fact,
that the shape of obtained pr— distribu-
tions (for fixed x) is close to the Gaussian,
is remarkable. In fact, the Gaussian shape
is supported by phenomenology.
Polarized distribution functions.
Relation between the distribution g¢j(z)
and its unintegrated counterpart can be
obtained in a similar way, however in gen-
eral the calculation with polarized struc-
ture functions is slightly more complicated.
First let us remind procedure for obtaining
structure functions gy, g» from starting dis-
tribution functions G* defined in [6], Sec.
2, see also the footnote there. In fact the
auxiliary functions G p, Gg are obtained in
appendix of the paper [7]. If we assume
that Q% > 4M?2?, then the approxima-
tions |q ~ v, BL ~ EotpL

(A3),(A4) rewritten as

+
Gx = /AG (po) wx0 (poMm

20 +
o o
X x =
El s ¥
= o
() o
0 0
-10
50 -
20 | | | | | |
0 02 04 06 08 0 01 02 03 04
T 10 = 40
Qo Q
X x
5 5 5 20 -
— —
o o
0 0
N . T
10 1 1 1 40 1 1 1
0 02 04 06 08 0 01 02 03 04
X p+/M

Figure 2: Transverse momentum dependent polar-
ized distribution functions for u (upper figures) and
d—quarks (lower figures). Left part: dependence on
x for pp/M = 0.10,0.13,0.20 is indicated by dash,
dotted and dash-dot curves; solid curve correspods to
the integrated distribution gf(z). Right part: de-
pendence on pr/M for x = 0.10,0.15,0.18,0.22,0.30
from top to down for u—quarks, and symmetrically
for d—quarks.

are valid and the equations (A1),(A2) can be with the use of

dp1d2pT
Po 7

X=r5 (6)

~4)
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where
m —p1COSW + Pr COS Y sinw (7)
wp = —
F 2M?2v po+m
1 —p1 — (—p1 cosw + prcos psinw) cosw
><<1+—<p0— pL— (=m .QPT ¥ ) >>’
m sin” w
m —p1COsSw + prcospsinw 1
wg = 1+ D1 pr @ - (8)
2Mv Po+m m

( _ —p1 — (—p1 cosw + pr cos psinw) cosw >>
X | —p1 cosw + prcospsinw — — cosw | | .
sin® w
Let us remark, that using the notation defined in [3] we can identify
—cosw = S, sinw = Sy, prsinw cos ¢ = prSr, 9)

which appear in definition of the TMDs [2]:

1 S
§tr (V507 (x, pr)| = SLgi(x,pr) + %9#(%1&) (10)

The expressions (7),(8) can be reordered in terms of powers of cos p:

2
_ cosw Py 9
wp = o (m—i—po cos” ¢ + (prtanw (11)
pr P1
+ tanw — cotw) | cosp — +1 ,
e RS i)
1 A ) p1pr cotw
Wy = cos” p — ——cosp+m | . 12
ST oMy <m+po 7 m —+ Py 4 (12)
Now, in analogy with Eq.(46) in [7] we define (note that Pq/qS = —M/ cosw):
M? M?
wy = Mv - wg + V-wp, wy = — v , (13)
cosw cosw
which implies
dp, d?
gr = /AG (po) wid (po Lt 2 m) LPT, k=1,2. (14)
M Po
After inserting from Eqgs. (11),(12) definition (13) implies
1 b1 P1
wy == [m-+ 1+ —prtanw | 1+ cos , 15
1 2( Pl( m+p0> br ( m—l—po> 80> (15)
wy = L( vt cos® p + (prtanw (16)
2 \m+ po
pPr P1
tanw — cotw) | cos — +1 ,
P eose - (2 1)
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2
w1+w2:1<p7T0052g0—plpT7COtwcosgo+m>. (17)
2 \m+po m + po
Apparently, the terms proportional to cosp disappear in the integrals (14) and the re-
maining terms give structure functions g, go defined by Eqs. (15),(16) in [6].
Now, the integration over p; and further procedure can be done in a similar way as
for unpolarized distribution. First, to simplify calculation, we assume m — 0. For w; we

get

1 p1 Po + P1 dp,d*pr
q _ _— — — _
g1(z) 5 /AGq(po) <1 + p0> (p1 — prtanwcos ) o < 7:) P (18)

The d—function is modified as

5 (po +tn x) dpy = 6 (p1 —p1) dp

M z/Po 7 (19)

where , ,
P (o)) A (e@)) o

Modified §—function allows to simplify the integral

l/AGq(ﬁO) (M (22 — &) — 2pr tanw cos p) d2§T, (21)

T2
E=u <1 + (%)2> . (22)

where

Now we define

Mg

Aq(z,pr) = AG ( 5

> (M (22 — &) — 2pr tanw cos ) %

According to Eq. (40) in [6] we have

26, (%) = s (ot 2 [ MWy -efare).

After inserting to Eq. (23) one gets:

Mla,pr) = i (310 +2 /£ - €l (©)) (2)

X <2x —&— Q%tanwcosgo) .

gi(v)

This relation allows us to calculate the distribution Ag(z, pr) from a known input on
gi(z). Further, it can be shown, that using the notation defined in Eqs. (9),(10), our

result reads

pPrSr
St tt(e ), 20

—cosw - Aq(x,pr) = Spgi(x, pr) +

162



3.5 P.Zavada: Priuhled do nitra protonu v obraze strukturnich funkci 126

where

2z — ¢ Ll d
q _ q _ e a
9i(z,pr) = 2 ME <3gl(£) +2/£ ) dy §d§gl(€) : (27)
i 2 " gi(y) d
atfter) =~y (30100 +2 [ B0y e atc)). (29)
Apparently, both functions are related in our approach:
gi(x,pr) x ( pr 2) _
St = — (1= — =p1 /M. (29)
Gif(w.pr) 2 (i) ) =

Finally, with the use of standard input [11] on ¢{(z) = Ag(z)/2 we can obtain the curves
gi(z,pr) displayed in Fig. 2. Let us remark, that the curves change the sign at the point
pr = Mx. This change is due to the term

23:—5::5(1— (%)j — 25, /M (30)

in relation (27). This term is proportional to the quark longitudinal momentum p; in
the proton rest frame, which is defined by given x and pr. It means, that sign of the
gX(x,pr) is controlled by sign of f;. On the other hand, the function gy (z, pr) does not
involve term, which changes the sign. The shape of both functions should be checked by
experiment.

To conclude, we presented our recent results on relations between TMDs and PDF's.
The study is in progress, further results will be published later.
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Kapitola 4

Shrnuti a zaver

Predlozend dizerta¢ni prace je vénovana studiu strukturnich a distribucnich funkci
nukleonti a ¢astecné i jader. Prva Cast prace je experimentalni a tyka se zejména meto-
dického zpracovani a fyzikalni analyzy vysledki experimentu BCDMS. Experimentalni
data byla ziskana pfi nékolika energiich mionového svazku urychlovace SPS v CERN
v intervalu 100 —280 GeV, tento rozsah energii umoznil méreni nepolarizovanych struk-

turnich funkei F5, F; v kinematické oblasti
0.06 < z < 0.80, 7 GeV? < Q2 < 260 GeV2.

Za nejdulezitéjsi vysledky prvé ¢asti prace je tieba povazovat ziskani velmi presnych
hodnot strukturnich funkci protonu a deuteronu v uvedené kinematické oblasti. V dal-
§im kroku byly pro oba terce ziskané strukturni funkce Fy(x, Q?) analyzovany z hlediska
naruseni skalovani. Z obou strukturnich funkei byly nezavisle ziskany hodnoty QCD
parametru Agep, které jsou ve velmi dobré vzajemné shodé. Vysledky experimentu
BCDMS, spole¢né s vysledky jinych experimentii, v nichz byly rovnéz méreny struk-
turni funkce nukleont, jsou spolehlivym potvrzenim predpovedi pQCD.

Dalsim velmi dilezitym vysledkem experimentu BCDMS je pfesné zméteni poméru

strukturnich funkei
Fy(x, Q%) F (2, Q%).

Zavislost tohoto poméru na proménné x je podstatou tzv. EMC efektu. Experiment
BCDMS vyznamné prispél k potvrzeni a k dalsimu kvantitativnimu zpresnéni tohoto
efektu. Soucasné je vsak treba konstatovat, ze v chapani EMC efektu dosud pretrvavaji
neékteré nejasnosti. Proto tento efekt i nadale zlstava aktudlnim tématem pro dalsi
teoreticky i experimentalni vyzkum.

V druhé casti prace, ktera je zamérena teoreticky, je navrzena a analyzovana kova-
riantni verze QPM. Soucasné je provedeno srovnani se standardnim, tj. nekovariantnim
QPM. Vychozi filosofie obou pristupti jsou v obecné roviné podobné, v kovariantni verzi

jsou vsak navic uplatnovany pozadavky symetrie:
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A. Relativistickd kovariance

Tato vlastnost umoznuje strukturu protonu, zahrnujici i vnitini pohyb kvarki,
transformovat do riznych souradnych systému prostrednictvim obecnych Lorentzo-
vych transformaci. Mezi nimi zaujima zvlastni misto klidova soustava protonu, mimo
jiné proto, Ze orbitalni moment kvarki vztazeny k této (a praveé k této) soustavé muze
predstavovat dilezitou komponentu vysledného spinu protonu. Pozadavek kovariance
tak vytvari podstatny rozdil od nekovariantniho QPM, jehoz formulace je striktné va-
zana na preferovany souradny systém, IMF. I z formalniho hlediska je treba dat vyssi
prioritu kovariantnimu pristupu, u kterého je zabezpecen soulad s teorii relativity.

B. Sféricka symetrie

Tento predpoklad, ktery se vztahuje k rozdéleni hybnosti kvarki v klidové soustave
protonu, ma rovnéz hlubsi teoretické opodstatnéni. Jeho uplatnéni pak znamend, ze
podélné a pricné komponenty hybnosti kvarkia (vztazeno k hybnosti leptonu ¢ fotonu
vstupujiciho do DIS) vystupuji na téze irovni a z protonu ¢ini realisticky 3D objekt.
Tim je umoznéno i konsistentni zavedeni orbitalniho momentu. I tento predpoklad
je v protikladu s nekovariantnim QPM, u néjz je vnitini pohyb efektivné potlacen a
kinematika v IMF je zjednodusSena do jedné dimenze.

Prestoze pozadavek uvedenych symetrii je velmi obecny, jeho uplatnéni generuje
radu vztahu a pravidel mezi strukturnimi ¢i distribu¢nimi funkcemi i pravidel zahrnu-
jicich orbitalni moment. Z fenomenologického hlediska je dilezité a zajimavé, Ze tato
pravidla 1ze experimentalné provérovat. Z téchto divodid miize byt navrzeny model
efektivnim doplikem k standardni verzi QPM a k rigordzni, ale znacné komplikované
a dosud netplné teorii nukleonu zalozené na QCD.
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RESUME

This thesis is devoted to the study of structure and distribution functions of nucleons
and some nuclei. The first, experimental part concerns analysis of experimental data
obtained in the BCDMS experiment (‘BCDMS Collaboration’ — Labs: Bologna, CERN,
Dubna, Mnichov, Saclay). The data were collected at the muon beam of the SPS
accelerator at CERN in the energy range 100 — 280 GeV. As a result, the unpolarized
structure functions F5, F; have been obtained in the kinematical region

0.06 < x < 0.80, 7 GeV? < (Q? < 260 GeV2,

The precise measurement of the proton and deuteron structure functions represent most
important results of this part of thesis. In a next step, both the structure functions have
been analyzed from the viewpoint of scaling violation. We proved, that values of the
QCD parameter Agcp obtained from the two structure functions well agree. Results of
the BCDMS experiment, together with the results of other experiments on structure
functions, reliably demonstrate the relevance and validity of pertubative QCD.

Further very important BCDMS result is the precise measurement of the ratio of
functions

FFe (2, Q%) | (2,Q%).
Dependence of this ratio on the parameter z is a basis of the EMC effect. The BCDMS
experiment has significantly contributed to the measurement and study of this effect.
At the same time, one has to say, that until now this effect is not completely explained.
In fact it still represents a very interesting topic for further theoretical and experimental
research.

In the second, theoretical part of this thesis, the covariant version of quark-parton
model (QPM) is proposed and analyzed. At the same time, a comparison with the
standard, non-covariant QPM is performed. In fact, the starting general philosophy
is rather similar for the both approaches, but our covariant approach insists on two
additional symmetry requirements:

A. Relativistic covariance

This condition allows to transform the proton structure from one reference frame to
the another by means of the Lorentz boosts. The special case is the proton rest frame,
in which among others, the quark orbital momentum can represent an important com-
ponent of the resulting proton spin. This is the crucial distinction from the standard,
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non-covariant QPM, which is strictly formulated in the preferred frame (IMF=Infinite
Momentum Frame). The covariant approach should be preferred also from the formal
point of view, because of compatibility with the theory of relativity.

B. Rotational symmetry

This requirement is related to the quark momentum distribution in the proton rest
frame and has a deeper theoretical justification. Its application means, that the quark
longitudinal and transversal momenta (related to the direction of the momentum of
photon mediating lepton-quark interaction) are equally important for description of
the proton — as a realistic 3D object. Rotational symmetry also allows to consistently
introduce the orbital momentum. These consequences contrast to the non-covariant
QPM, in which intrinsic motion is effectively suppressed and the kinematics of the
IMF is reduced to one dimension.

In spite of the fact, that both the requirements are rather general, they imply a
set of relations holding for structure and distribution functions and rules related the
quark orbital momentum. From phenomenological point of view it is important and
interesting, that these rules can be experimentally tested. That is the main reason,
why proposed model can serve as an effective complement to the standard version of
the QPM and to rigorous, but rather complicated and still incomplete theory of the
nucleon based on the QCD.
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